Sediment Sampling in Portage Inlet and Gorge Waters for Metal Determination

REPORT

Submitted by:

AQUAMETRIX RESEARCH LTD.

204 – 2527 Beacon Avenue Sidney, British Columbia Canada V8L 1Y1

Phone:

(250) 655-3255

Fax:

(250) 655-3265

Email

gormican@pinc.com

Submitted to:

Jody Watson VEHEAP Coordinator Capital Regional District P.O. Box 1000, 524 Yates Street Victoria, B.C. V8W 2S6

Our File: 00PR-11

June 2000

Marine Sediment Chemistry Sampling for Portage Inlet and the Gorge Waterway.

INTRODUCTION 1.

An extensive database of marine sediment sampling results exists for both Victoria and Esquimalt Harbours. However, little marine sediment sampling has been conducted in the Gorge Waterway and Portage Inlet, therefore, the status of the marine sediments in those areas is uncertain. To begin to fill in these data gaps, marine sediments in these areas were collected by Aquametrix Research Ltd. and analyzed for metals by the Pacific Environmental Science Centre.

This report provides a summary of the field sampling methods employed, the parameters analyzed and compares the collected data with established sediment quality criteria. No in-depth analysis was conducted due to budgetary considerations.

FIELD SAMPLING METHODS 2.

Sampling was conducted on March 03 & 06, 2000 in the Gorge and Portage Inlet in a general grid across the area. Approximate station positions were pre-determined by plotting 40 locations on the CHS chart (No. 3415) with approximately equal spacing. All samples were taken from a boat and a DGPS location obtained for each sampling location. At each location, field measurements for the pH, temperature, dissolved oxygen and salinity of the water were also made and recorded using portable instruments supplied by the Capital Regional District Engineering Department. Field calibrations of each instrument were performed daily using supplied reagents and standards as per each instrument's operating manual.

Sediment samples were retrieved using a Ponar grab sampler constructed of stainless steel. One sample was collected at each station. At every 10 sampling stations, a duplicate field split was taken. Sampling generally followed the protocols for sediment sampling outlined in the Puget Sound Estuary Program (PSEP, 1997), which were as follows:

- The inside of the grab sampler was thoroughly rinsed with seawater at the station being ī. sampled.
- The grab sampler was lowered through the water column such that travel through the last 5 meters was no faster than 1 m/sec. This minimized the effects of bow wave disturbance ii. to surficial sediments.
- The sampler was retrieved to the surface and then lowered onboard to determine if the sample is successful or not. A successful grab was one having relatively level, intact iii. sediment over the entire area of the grab, and a sediment depth at the center of at least 7 cm. Grabs that did not contain sediments, or partially filled grabs, or grabs with shells or grossly slumped surfaces were deemed unacceptable. Grabs completely filled to the top,

where the sediment was in direct contact with the hinged top, were also unacceptable. If the grab was deemed unacceptable, the sediment was discarded and another grab conducted.

- iv. The overlying water from the grab was carefully drained off using a siphon.
- v. Sediment from the top 2 cm of each successful grab was transferred from the grab sampler into a polyethylene bowl using a disposable plastic spoon. Care was taken to ensure that the sediment was removed from the grab and did not come in direct contact with the sides of the grab sampler (i.e. the sediment was taken from the middle of the grab). The sediment were thoroughly homogenized using the spoon until a uniform colour and texture appeared.
- vi. Subsamples were transferred from the bowl into appropriate pre-cleaned sampling containers and preserved as required (kept on freezer packs in a cooler).
- vii. At each station, a new disposable plastic spoon was used, the bowl was washed and rinsed at least three times with seawater from the station being sampled.
- viii. Steps i through vii were repeated until all samples were collected.
- ix. Station, sample number, sample type, and required chemical analysis were labelled on each jar. In addition, the following information was recorded on field logs:
 - collection date
 - collection time
 - DGPS location (real time)
 - composite number (if required)
 - other field measurements (DO, pH, temperature, salinity)
 - field comments
- x. The labelled jars were placed in a cooler containing ice to keep the samples cool. The samples were shipped to the lab for analysis.

3. QUALITY ASSURANCE AND QUALITY CONTROL

The following quality control (QC) procedures were employed:

- i. The interior surfaces of the grab sampler was washed with seawater prior to use to assure that no sediment remained from the previous station.
- ii. Prior to use, all supplies (e.g., bowl) were cleaned with nonmetal containing dish soap

Sediment Sampling in Gorge Waters & Portage Inlet - VEHEAP

L QUAMETRIX

and thoroughly rinsed with seawater. A new disposable plastic spoon was used at each sampling station.

- iii. The grab was placed in a clean non-metal container all times to avoid contamination from boat fuel *et cetera*.
- iv. Quality control samples: Duplicate field samples (field split) were taken at every 10th station. The field replicates were sampled, stored, prepared, and analyzed using the same methods. One per 10 samples are identified for the lab QC program.

4. RESULTS

The positions of each of the 40 stations sampled is presented in Table 1. This table also presents the field notes collected at each location including depth of sample, water temperature, salinity, dissolved oxygen (DO) and pH readings from the portable instruments as well as comments on the composition of each of the samples.

The location of each of the sample stations is presented in Figure 1. Differential GPS was used to determine position in the field with the NAD83 datum. Depths presented in Table 1 were estimated using a marked line and are not corrected for tide height. As such, the depths should be considered approximate and accurate to ± 0.5 metre.

The analytical results are presented in Table 2. All units for metal ICP analysis are dry µg/g while moisture content was reported as percent. The third column of this table indicates the Method Detection Limit achieved by the laboratory for each parameter. The laboratory QA/QC procedures were not supplied in detail to Aquametrix Research, however, the results from PESC indicate that at least the following procedures were used to ensure quality and reliability of results:

- · laboratory method blanks,
- · reference materials (type not specified) and
- replicate samples.

Recoveries of reference material were generally within acceptable limits with most falling within ± 10%. Blanks were less than the method detection limit which is also acceptable. To further verify QA/QC more information on methods would be required from the laboratory (which was beyond the scope of this project).

A comparison was made between the reported results and the WDOE/CRD Standards for metals in sediments. The standards are presented in the second column of Table 2 with values exceeding the standard highlighted and printed in bold face in the results columns for each station. The locations and tpe of metals exceeding criteria are presented in Figure 2.

OUAMET RESE A total of 9 samples exceeded the criterion for cadmium while 6 samples exceeded the standard for mercury (Table 2). The majority of the stations exceeding criteria were located in the Gorge Waters, between the Trestle Bridge and the Gorge Bridge. The exceedances for cadmium ranged from 9.3 to 20.9 μ g/g with a mean of 15.3 μ g/g versus a standard of 5.1 μ g/g. Exceedances of mercury were much closer in value to the standard of 0.41 μ g/g with a range of 0.434 to 0.750 μ g/g and a mean of 0.566 μ g/g.

No formal analysis of the water column data was performed and the following comments are provided as observations. Surface water temperature varied little with a range of 7.4 to 8.7 °C over all stations and both days of sampling. Salinity values ranged from 5.8 to 25.4 ppt with the lower values generally found in Portage Inlet and the highest values nearest the Selkirk Waters and the Trestle Bridge. The lowest salinity values were not found immediately adjacent to stream entry points and were likely due to storm drain inputs.

Dissolved oxygen concentrations varied little over the entire study area with a range of 9.7 to 10.5 mg/L. While not presented as data, the instrument indicated that the surface waters were always saturated with oxygen with values ranging from 90 to 110 % saturation.

The observed values for pH ranged from 7.37 to 8.38 with lower values found in Portage Inlet were salinity values were also lower.

5. CONCLUSIONS & RECOMMENDATIONS

The purpose of this preliminary sampling in Portage Inlet and the Gorge Waters was to gain some insight into the level of contamination throughout the system. The objective was met as the entire area was sampled, albeit without replication. Comparison of the results with the WDOE/CRD standard for metals indicated that few stations exceeded established values for the protection of aquatic life in sediment.

Future sediment sampling effort for metals should target the areas where exceedances were noted in this study. Triplicate grab samples should also be used at those locations to determine the *in situ* variability of the sediments.

Future effort should also include identification of possible sources of metal input into the Gorge Waters and Portage Inlet system and further testing for other parameters such as organics (PAH, organotins, chlorophenols and PCBs, et cetera). The choice of which parameters to measure could be made using the CRD Storm Drain Program data as this should indicate contaminants which are being added to the system. There may be value in testing for all the organic compounds once to assess the present conditions that may be a result of past dumping practices and which would therefore be missed by the Storm Drain Program. Sediments are a useful indicator of historical input of contaminants.

A survey of biota in the Gorge Waters and Portage Inlet should also be conducted to indicate the

Sediment Sampling in Gorge Waters & Portage Inlet - VEHEAP

present health of the entire ecosystem. This could be conducted by sampling existing infaunal organisms in the same manner as is conducted off the Victoria Waterfront by the CRD to determine the area of impact in the vicinity of the sewage outfalls.

LITERATURE CITED 6.

PSEP (Puget Sound Estuary Program). 1997. Puget Sound Estuary Program, Recommended guidelines for sampling marine sediment, water column, and tissue in Puget Sound. Prepared for US Environmental Protection Agency, Region 10, Seattle, and Puget Sound Water Quality Action Team, Olympia, WA. 51 pp.

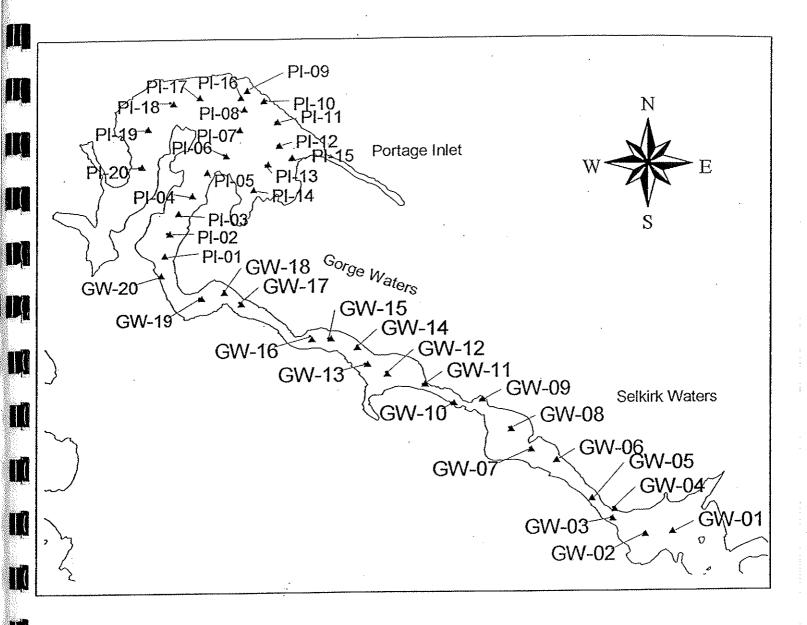


Figure 1. Locations of Sediment Sampling Stations For VEHEAP - March 2000. PI- designates stations in Portage Inlet and GW- designates Gorge Waters stations.

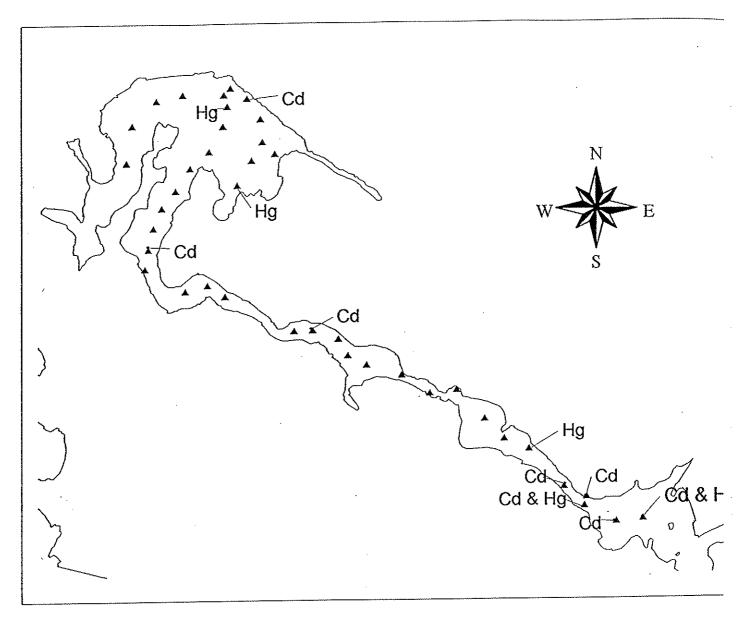


Figure 2. Locations of stations sampled for metals indicating those that exceeded WDOE/CRD standards for the indicated metals (Cd = cadmium, Hg = mercury). Sampling conducted in March 2000.

Table 1. Sampling Locations and Field Log Data for Sediment Sampling in Portage Inlet and Gorge Waters for VEHEAP in March 2000,

QUAMETRIX RESEARCH

Table 1. Sampling Locations and Field Log Data for Sediment Sampling in Portage Inlet and Gorge Waters for VEHEAP in March 2000.

Station			Lati	Latitude	Long	Longitude	Depth	-	S	8	pH Comments	
							(m)	ဉ္	(ppt) (mg/L	mg/L)		
GW-01	06-Mar-00	11:10 48°	48°	26.378 N 123°	123°	23.019 W	3.0	8.5	25.4	9.9	8.03 Rep-04, <0.5cm green over black, some	e smell
GW-02	06-Mar-00	11:00 48°	48°	26.369 N	123°	23.148 W	2.5	8.3	24.5	9,8	7.91 <0.5cm green over black but little odour	-
GW-03	06-Mar-00	10:50 48°	48	26.450 N	123°	23.305 W	5.0	8.3	24.5	9.8	7.91 <0.5cm green over black but little odour	1
GW-04	06-Mar-00	10:45 48°	48	26.449	N 123°	23.294 W	1.5	8.3	23.8	9.7	8.08 green, no smell, no black	
GW-05	06-Mar-00	10:40 48°	48°	26.483	N 123°	23.405 W	1.5	8.2	23.3	9.8	8.02 thin green layer over black, no smell	
GW-06	06-Mar-00	10:30 48°	48°	26.605 N	123°	23.578 W	2.0	8.2	24.0	8 6	7.94 green <0.5cm black, smell	
GW-07	06-Mar-00	10:20 48°	48	26.638 N	123°	23.700 W	3.0	8.1	23.7	9.8	8.06 green, no smell, shell fragments	
GW-08	06-Mar-00	10:15 48°	48	26.703	N 123°	° 23.796 W	2.0	8.1	23.7	9.8	8.05 slight smell, green 1.5 cm over black	
GW-09	06-Mar-00	10:05 48°	48	26,797	N 123°	° 23,935 W	1.5	8.0	22.7	9.7	8.04 eelgrass, shell debris, no smell	
GW-10		10:00 48°	48		123°	° 24.067 W	1.5	7.6	21.8	9.7	8.02 eelgrass, shell debris, no smell	
GW-11	06-Mar-00	9:50 48°	48	° 26.845 N	123°	° 24.202 W	1.5	7.6	20.4	9.8	7.95 eelgrass, mud, sand, small sample	
GW-12	06-Mar-00	9:45 48°	48	° 26.877 N	123°	° 24.375 W	1.0	7.6	21.5	9.6	7.88 green over black, smell	
GW-13	06-Mar-00	9:35 48°	48	ŧ	1123	° 24.467 W	1.5	7.6	20.9	10.0	7.73 greenish, no black, no smell	
GW-14	06-Mar-00	9:30 48°	48	1	1123	° 24.513 W	2.0	7.4	19.3	10.0	7.61 greenish, no black, no smell	
GW-15		14:00 48°	48	° 26.989 N	V 123°	° 24.635 W	2.5	8.5	18.7	6.6	7.87 Rep-03	
GW-16	1	13:50 48°	48	26.987	N 123°	° 24.725 W	2.0	8.5	16.4	10.2	7.77 shells, green throughout, no black or smell	smell
GW-17	03-Mar-00	13:40 48°	148		1123	° 25.063 W	2.5	8.5	19.6	10.0	7.83	
GW-18	03-Mar-00	13:30 48°)48	° 27.135 N	V 123°	° 25.149 W	3.0	8.6	16.4	10.1	7.83	
GW-19	03-Mar-00	13:15 48°	348	° 27.116 N	N 123°	i° 25.258 W	2.0	8.5	15.2	10.3	7.85 <0.5cm green over black but little odour	'n
	1 1:	13:00 48°	748	27.189	N 123°	3° 25.457 W	1.5	8.6	6.0	10.2	8.38 shells, black not too smelly	
ししし	ا ماستور ا					- !						
AN												
ETI ESE												·
RIX ARCH												
: : :		:										

Table 2. Analytical Results of Sediment Sampling in Portage Inlet and Gorge Waters for VEHEAP in March 2000.

Parameter	WDOE /CRD Standard	MDL	GW-01	GW-01 Dup	GW-02	GW-03	GW-04 GW-05		GW-06	GW-07	GW-08	GW-09
Moisture Content %		0.1	69.3	68.6	70.2	6.09	50.7	55.5	72.7	37.9	76.4	47.2
Aluminum µg/g		8	21200	22900	29800	22600	23900	13400	27900	17800	26200	20400
Antimony µg/g		8	<8	8>	8 ×	& V	8>	82	<8 ×8	8	8>	82
√Arsenic µg/g	57	8	8>	8×	12	12	6	8>	13	80	11	82
√ Barium µg/g		0.2	162	98	91.7	91.3	128	49.5	107	60.8	92.9	90.4
V Berylium ug/g		0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	6.1
Boron µg/g		2		91	160	134	142	61	148	72	173	101
✓ Cadmium μg/g	5.1	0.8		11.6	17.4	14.1	16	6.3	<0.8	<0.8	<0.8	<0.8
Calcium µg/g		20	5110	7140	7770	8800	24400	7310	8480	11300	9360	16400
Chromium µg/g	260	0.8		53.7	64.5	51.2	54.4	28.5	61.9	43.2	61.9	39.4
Cobalt µg/g		0.8		5	6.8	4.2	6.4	3.5	8'9	4.4	6.5	5.9
√Copper µg/g	390	0.8	29.1	52.4	78.7	115	146	39.3	100	44.8	94	49.2
Iron µg/g		0.8	30000	22600	33600	27600	29700	17100	32200	20600	30300	21900
√tead µg/g	450	8		117	140	111	149	92	147	98	141	86
Mangesium µg/g		20	8790	7370	11400	0086	9430	2050	11100	6290	11600	8500
Manganese µg/g		0,2	331	287	352	294	259	283	326	257	299	247
∟ Mercury μg/g	0.41	0.008	0.546	0.526	0.381	0.601	0.233	0.253	0.434	0.293	0.372	0.257
Molybdenum µg/g		2	<2	2	4	<2	<2	Z>	<2	<2	4	<2
/Nickel µg/g		၁	41	27	37	28	30	19	33	22	33	22
Phosphorus ug/g		20		830	1110		1010	668	1310	867	1380	12
Potassium µg/g		8	4840	4130	5650	4510	4700	2280	5410	2810	5190	3980
Selenium ug/g		8		φ>	8	8	8	<8	8 >	10	12	13
Silican µg/g		8	9	858	859	7	1280	776	1360	1030	1130	1730
N√Silver µg/g	6.1	2		<2	<2	ζ>	۸ ک	<2	<2	<2	<2	<2
Sodium µg/g		20	4	12200	25700	17800	15200	6880	19400	8030	27000	17400
Strontium µg/g		0.2		64.9	81.7	80.6	133	57.9	85.4	73.5	36	394
Sulfur µg/g		8	637	5740	13400	6430	10300	3510	10300	0909	9770	7070
√Tin µg/g		8			8	82	8	<8>	8>	8>	8>	8
Titanium ug/g		0.3	18	16	1740	1720	1800	1310	1910	1820	1710	1360
V Vanadium ug/g		7			66	80	88	53	95	99	76	70
VZinc µg/g	410	71.2	71.2	156	242	140	211	80.2	188	105	199	139

Table 2. Analytical Results of Sediment Sampling in Portage Inlet and Gorge Waters for VEHEAP in March 2000.

Parameter	WDOE /CRD	MDL	GW-10	GW-11	GW-12	GW-13 (GW-14	GW-15	GW-15 C	GW-16	GW-17 (GW-18
/O +co	Olaildai	1	R R	43.2	77.6	9.69	67	60.1	59.6	67.6	49	47
Moisture Content 76		- α	07700		3000	26500	24500	20700	29200	25800	16100	19500
Aluminum ug/g		0 0	2 4	200	8	8	82	8	82	8>	8	8
Antimony ug/g	7.3	0 0	7 4	7 5	11	12	15	89	16	10	8>	6
Arsenic µg/g	λο	0 0		71 1	104	88.1	79.2	67.2	131	87.8	47.7	60.7
Barium µg/g		0.0	2 7	1.4	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Beryllum µg/g		2.0		107	185		126	06	140	120		82
Boron ug/g	η. -	1 0	0 V	<0.8	<0.8	<0.8	<0.8	<0.8	17.2	<0.8		×0.8
Caumun µy/y	5	3 6	95600	1-1	9460		10200	6280	9460	_		9410
Calcium µg/g	Cac		'	1	L		51.2	54.1	64.8	.,	ല	43.5
Chromium µg/g	202		5 6					5.9	5.8	8.1		7.8
Cobalt µg/g	C	o a	0		98.2	77.7	69.9	54	109		38.7	45
Copper ug/g	080		C.	246	180	29200	30200	22300	32900	27200	183	235
Iron ug/g	100	ο α					109	129	143	142	72	
Lead µg/g	400	2 6	7	ļα	5	5	9500	7430	10900	9340	6020	
Mangesium µg/g	-	200	2		1_	_			293	334	242	342
Manganese µg/g		0.2		C	C	C		O	0	0.312	0.184	0,214
Mercury µg/g	0.41	0.008	၁ ၁		1	7				2	2 2 2	<2
Molybdenum µg/g		7 0			C	C					19	25
Nickel µg/g				4 780	7	15	- 2	α	10	1	11	
Phosphorus µg/g		07	1/20					m	6030	7 4640	2610	3170
Potassium µg/g		ŽĮ.			5					15	6	6
Selenium ug/g			0 0	-	σ	100	918	3 868	1130	698 (9 952	914
Silicon µg/g	•								\$	Ì	<2 <2	
Silver µg/g	- 0	4 6	7	178	274	166	16900	11600	17500	0 17400	0 12500	125
Sodium µg/g					_				86.6	6 76.2		
Strontium ug/g		j 	G	C.	7	F	5140	0) 5760	11600	0 7350	0 2930	ଚ
							_	8		× 8>	<8 <8	8
I'm ng/g		C	7	14	18	17	0 1520	0 1480	1920	0 1700	0 1340	14
I tanium ug/g							92 81	1 75		97 8	87 59	
Vanadium uy/y	7	17	10		83	240 226	6 173	3 159	185	•	90 11	5 130
Zinc µg/g	+	-										

Table 2. Analytical Results of Sediment Sampling in Portage Injet and Gorge waters for VEHLAR III March 2000.

	WDUE /CRD Standard	MDL	GW-19	GW-20	PI-01	PI-01 Dup	PI-02	PI-03	PI-04	PI-05	PI-06	PI-07
Content %		0.1	70.5	74.5	76.9	76.8	73.1	81.1	83.5	81.2	79.1	81.1
Aluminum µg/g		ω	24600	31300	31500	36300	26400	33500	35900	36100	37800	40500
Antimony µg/g		8	8>	&	8	8>	8>	8>	8 >	8>	<8	& \ \
	57	8	1.	15	12	12	13	16	18	15	16	13
		0.2	92.1	103	107	105	88	117	128	118	127	137
		0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
		2	108	129	169	162	124	198	261	209	193	196
Cadmium µg/g	5.1	0.8	<0.8	<0.8	<0.8	20.9	<0.8	8'0>	<0.8	<0.8	<0.8	<0.8
		20	8460	21100	8300	8160	7140	8000	8840	7830	8140	0006
Chromium ug/g	260	0.8	49	61.5	67.1	74.9	74.7	69	72.2	75.4	76.1	81.8
		0.8	7.5	6.6	6	9.9	8.1	10.9	9.7	11,7	11.2	10.3
	390	0.8	53.2	71.3	80.6	86	62.1	80.7	91.5	98.1	96.8	101
		0.8	25200	35400	34100	36E	29600	35200	39800	41100	41500	42900
	450	ω		118	148	136	134	138	143	147		145
Mangesium µg/g		20	8210	11800	11600	13	6	13100	15300	14500	14100	7
Manganese µg/g		0.2		625		333	378	332				
	0.41	0.008	0	0.2	0.3	o.	0.31	0.314	0.3	0.3	0.35	0.37
Molybdenum µg/g		2	3	<2		₹		7	Ω			
		က	27			43	33	38	43	42	43	
Phosphorus µg/g		20			11:50		1090	1360				
Potassium µg/g		20			2900	6870	4700	6640	74	71	73	79
Selenium µg/g		ω		8>	11	<8	8>	13	8	-	8	
		8	1230	1130	1040	948	1040	970	1090	1450	1230	910
	6.1	2		<2	<2	<2	<2	<2	25		27	
		20	16800	25600	26100	31500	19100	31800	42000	35300	30200	37300
Strontium ug/g		0.2	81.9	153	92.1	93.4	76.1	98	120	102	98.7	
		ထ	8000	6670	13300	15200	11600	12300	14700	16400	15900	17600
		8	8×	8> <8	3 <8	× ×8	<8	8	φ,	8	8	
		0.3	1610	1760	1840	2010	1680	1870	1860	1900	1990	2110
Vanadium µg/g		2	80	98	3 102	110	87	105	112	113	117	120
	410	71.2	168	3 227	7 243	3 287	214	249	260	282	289	298

QUAMETRIX

Table 2. Analytical Results of Sediment Sampling in Portage Inlet and Gorge Waters for VEHEAP in March 2000.

동도동	WDOE // CRD // Standard	MDL	PI-08	60-ld	PI-10	PI-10 Dup	<u>r</u>	PI-12 F	Pi-13	PI-14	PI-15	PI-16
		0.1	81	82.2	79.3	79.1	79.3	78.6	80.8	81.7	66.2	82
		ω	41900	41900	45700	25600	39500	40000	41700	41500	32500	42500
1		8		82	8>	8>	<8	ω γ	×8	8	8	₩
1	57	8		20	22	11	19	17	19	50		21
		0.2	112	~ -	138	102	110	113	115		95.8	138
1		0	ľ	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	Y	1	<0.2
-		2			172	135	166	155	158	168	72	175
	ις. 4-	0		-	2.1	16.6	0. 0.	2	S	Q:	1.7	Qi
1		2	78	7470	8300	8820	8940	9010	8170	7300	9660	8310
i	260	0.8				60.5	71.8	74.2	78.1			
		0				6.1	20.2	20.9	21.3			
1	200	0 0	à			,		73.4	77.2	80.1		
	000	2 0	4	4	4	8	4	42100	40900	40	34	41
_1	047			_	<u> </u>	1	167	169	172	170	151	171
	200	7	C.	14	133	100	12900	12800	13400	13600	8	13
		010		1_		1	384	420	329	321	405	
	0.44	2000	C		0	0.343	3 0.298	0.3	0.34	1 0.75	0.261	0.3
	5	5	8			1	42	<2>	<2	2 <2	2	
							2 43	42	41			
		0	13	14	14	+	1640	1830	1300	1220		
		10	20 6730	<u> </u>			8	6200	0699	99	46	69
						88	85	8>	<8	8> .<8		
			α	α	7	3 1050	0 928	806	870	0 700	. 28.	735
	4						2	3	\$	2 <2	2 <2	
	- - -	6	308	351	0 29200	170	0 27700	26400	31600	0 33400	0 12800	36
		4 0				5 78.2	1	112	102	2 98.2	2 88.3	
			12	4	14	+	0 10100	0866	13600	0 14400	0 12100	138
		<u> </u>		4			ļ	8		<8><8	8	
		C	19	19	19	17	0 1970	2100	2070	-	8	-
				_	113		88 106		7 107			
	410	71	1 0	266	36 270	183	3 252	253	3 260	0 261	1 222	2 258
ł	1											

o.
200
farch 20
Ma

	_	رـ	_																												
PI-20	68.6	34900	8	16	88.8	<0.2	148	ر. تئ	7300	57.5	18.9	46.7	34300	108	8860	311	0.308	<2	35	609	4780	8 >	724	<2	1	76.1	14100	8>	1890	89	189
P-19	74	41600	8	17	99.4	<0.2	145	2	7650	8.97	21.6	9.99	43100	148	11700	340	0.313	<2	42	12	2690	×8×	998	<2	21000	87.3	13600	8	2200	108	258
PI-18	78.4	44300	8	18	124	<0.2	166	1	8010	80.5	20.2	71	42700	162	12800	341	0.3	<2	42	1100	6850	<8	848	<2	26600	94.6	14800	×8×	2030		269
PI-17	74.7	38300	8>	19	109	<0.2	155	2.1	32200	74.6	19.5	61	38500	157	11300	324	0.373	<2	38	884	6210	<8	945	<2	25600	185	17100	<8	1750	101	246
MDL	0.1	8	ω	ω	0.2	0.2	Ŋ	0.8	20	8.0	0.8	0.8	0.8	8	20	0.2	0.008	2	3	20	20	8	8	2	20	0.2	8	8	0.3	2	71.2
WDOE /CRD Standard				57				5.1		260		390		450			0.41					:		6.1				,			410
Parameter	Moisture Content %	Aluminum µg/g	Antimony µg/g	Arsenic µg/g	Barium µg/g	Berylium µg/g	Boron µg/g	Cadmium µg/g	Calcium µg/g	Chromium µg/g	Cobalt µg/g	Copper µg/g	Iron µg/g	Lead ug/g	Mangesium µg/g	Manganese µg/g	Mercury µg/g	Molybdenum µg/g	Nickel µg/g	Phosphorus µg/g	Potassium µg/g	Selenium µg/g	Silicon µg/g	Silver µg/g	Sodium µg/g	Strontium µg/g	Sulfur µg/g	Tin µg/g	Titanium µg/g	Vanadium µg/g	Zinc µg/g

Notes:

Units for metals are dry µg/g (ppm)
Values exceeding WDOE/CRD standards are highlighted