Saanich Peninsula Treatment Plant Environmental Monitoring Program 2022 Report

Capital Regional District | Parks & Environmental Services, Environmental Protection

Prepared by: Marine Programs

Capital Regional District

625 Fisgard Street, Victoria, BC V8W 2S6 T: 250.360.3000 F: 250.360.3079 www.crd.bc.ca

August 2023

SAANICH PENINSULA TREATMENT PLANT ENVIRONMENTAL MONITORING PROGRAM 2022 REPORT

EXECUTIVE SUMMARY

The Capital Regional District (CRD) has been operating the Saanich Peninsula Treatment Plant (SPTP) since February 2000. The treatment plant serves North Saanich, Central Saanich and the Town of Sidney, as well as the Victoria International Airport, the Institute of Ocean Sciences and the Tseycum, Tsartlip, and Pauquachin First Nations communities. It is a conventional secondary level wastewater treatment plant, which has periodically produced Class A biosolids. The treatment plant discharges un-disinfected secondary effluent into the marine receiving environment (Bazan Bay) through an outfall located approximately 1,580 metres (m) from the shoreline at a depth of 30 m. Residual solids left over from the treatment process are currently disposed of at the Hartland Landfill. The CRD undertakes monitoring to meet provincial and federal regulatory requirements, as well as to assess the impacts of the outfall on the marine environment and human health. Information is often used to inform the CRD's Regional Source Control Program (RSCP) and treatment plant operations. This monitoring is stipulated by the BC Ministry of Environment and Climate Change Strategy (ENV) through the Municipal Wastewater Regulation under the *Environmental Management Act* and the federal Wastewater Systems Effluent Regulations under the *Fisheries Act*.

Historically, the CRD developed the monitoring program in consultation with the Marine Monitoring Advisory Group (MMAG). Subsequently, the long-term monitoring program was revised in collaboration with ENV, and the regular use of the MMAG has been discontinued.

The 2022 Wastewater and Marine Environment Program consisted of the following components:

- daily, weekly and monthly analysis of wastewater for federal and provincial compliance monitoring and treatment plant performance parameters, and quarterly analysis for priority substances
- quarterly wastewater toxicity testing
- monthly analysis of biosolids for fecal coliforms and metals
- a twice-yearly surface monitoring program, consisting of five sampling days within a 30-day period, once each in summer and winter

All Saanich Peninsula Wastewater Monitoring components were in compliance in 2022.

WASTEWATER MONITORING

Compliance Monitoring and Treatment Plant Performance

The CRD conducted wastewater monitoring on a regular basis to profile the chemical and physical constituents of influent and effluent, determine concentrations relative to provincial and federal regulatory limits, and assess treatment plant performance. Parameters monitored for regulatory compliance were all below the applicable effluent regulatory limits. Influent and effluent quality was within expected ranges and met all treatment plant operating objectives.

Priority Substances

In addition to the compliance and treatment plant performance monitoring, over 550 substances were analyzed in the SPTP influent and effluent on a quarterly basis. These substances were monitored to comprehensively assess potential risks of the wastewater discharge to organisms living in the marine environment around the outfall.

Approximately 39% of substances were detected in more than 50% of the samples, and included most of the conventional variables, metals, some organics, and high-resolution parameters. Most frequently detected substances were below BC and Canadian Water Quality Guidelines (WQG), even in undiluted

effluent. Only enterococci, WAD cyanide, nitrogen, copper, zinc, and high-resolution total polychlorinated biphenyls exceeded guidelines in undiluted effluent, prior to discharge to the marine receiving environment.

Water quality guidelines must be met outside of the initial dilution zone (IDZ) (an area with a radius of approximately 100 m around the outfall). In order to predict levels at the edge of the IDZ, estimated minimum initial dilution factors were applied to all substance concentrations. All substances were predicted to be below WQG after the application of this dilution factor, including those substances that were above guidelines in undiluted effluent, except for enterococci. As such, impacts of these discharged substances to aquatic life are likely minimal. Surface water monitoring was undertaken to assess the human health and shellfish impacts of the effluent bacteriological exceedances (see Surface Water Monitoring section below).

Toxicity Testing

In 2022, all toxicity tests passed with no mortality and no impacts on survival or reproductive endpoints.

Disinfection

When the SPTP was commissioned in 2001, a technical advisory group determined that disinfection to reduce effluent bacteriological levels was unnecessary to meet water quality guidelines for primary contact (e.g., recreation). The advisory group confirmed this recommendation in 2015. In 2020, after consultation with WSÁNEĆ First Nations and other stakeholders, staff again recommended that disinfection not be installed.

BIOSOLIDS MONITORING

No biosolids were produced at the SPTP in 2022. All sludge generated at the facility was disposed of at the Hartland Landfill. The CRD monitored the sludge in 2022 to inform the CRD's Regional Source Control Program (RSCP), and all regulated parameters were below Class A biosolids limits.

SURFACE WATER MONITORING

Bacteriology

Surface water (1 m depth) fecal coliform and enterococci concentrations were low at all stations, with geometric means of 2 CFU/100 mL or less. IDZ stations also had low bacteriology concentrations, with geometric means of 2 CFU/100 mL or less, below BC and Health Canada recreational and shellfish guidelines. There were no elevated geometric mean fecal coliform or enterococci concentrations observed at any station, on any sampling date, and no samples that exceeded the Health Canada enterococci single sample guideline of 70 CFU/100 mL.

Overall, results indicate that adverse health effects from recreational primary contact activities and shellfish harvesting are not expected. However, an area of approximately 17.65 km² around the outfall is closed for shellfish harvesting, as a standard Fisheries and Oceans Canada procedure near industrial and sanitary wastewater outfalls. Shellfish closures have a minimum radius around an outfall of 300 m, but closure areas are usually larger near bigger urban centres, such as for the SPTP outfall, where there are other potential sources of bacterial contamination (e.g., stormwater discharges, marinas, septic systems, sewage pumps), in addition to the wastewater outfall.

Extended Monitoring

WQG exceedances were observed for boron in the water column surrounding the SPTP outfall at all stations and sampling events, including at the reference station. These exceedances are expected, as boron is naturally occurring in the environment at higher levels. The CRD will continue to monitor metals in waters around the outfall and the reference station to assess environmental significance.

Nutrients

Nutrient content in receiving water is analyzed to provide a qualitative comparison between outfall and reference stations. There were some seasonal patterns in the nutrient results, which were consistent between the reference and the IDZ stations. Results were within the ranges measured in previous years and those of the pre- and post-discharge assessment programs. As was observed in previous monitoring years, high variability, both spatially and temporally, was evident in the data. Fluctuations in nutrient concentrations are attributed to natural variation in the monitoring areas, rather than to an effect from the SPTP discharge.

SEAFLOOR MONITORING

Seafloor monitoring (i.e., benthic community structure and sediment chemistry) was conducted in 2020. This component is conducted every four years, since before the plant commenced discharging in 2000. The next sampling event is planned for 2024.

OVERALL ASSESSMENT

Based on tests used to monitor effluent quality and surface water in 2022, all components of the Saanich Peninsula Wastewater Treatment Plant were in compliance. Results were similar to previous years. Influent and effluent quality was within expected ranges and met regulatory limits and operating certificate compliance requirements on all sampling dates. All substances, with the exception of bacterial indicators, for which there are BC or Canadian WQG, met these guidelines when the estimated minimum initial environmental dilution of the effluent was factored in, indicating that the predicted levels of substances in the environment were not likely to be at concentrations of concern to aquatic life. Surface water fecal coliform and enterococci data confirmed that the discharge to the receiving environment was in compliance and therefore, considered no or low risk for recreational activities and shellfish consumers. As expected, boron exceeded WQG at every station and sampling depth, including at the reference station, as the natural concentrations of boron are above WQG in the Salish Sea. ENV is working on updating the boron guideline. Surface water nutrient concentrations were within ranges measured in previous monitoring programs and showed no detectable effect from the discharge.

SAANICH PENINSULA TREATMENT PLANT ENVIRONMENTAL MONITORING PROGRAM 2022 REPORT

TABLE OF CONTENTS

EXECU	JTIVE SUMMARY	i
1.0	BACKGROUND	5
2.0	INTRODUCTION	5
3.0	WASTEWATER MONITORING	8
3.1	Introduction	8
3.2	Methods	8
3.2	2.1 Compliance Monitoring and Treatment Plant Performance	8
3.2	2.2 Priority Substances	9
3.2	2.3 Toxicity Testing	11
3.3	Results and Discussion	11
3.3	3.1 Compliance Monitoring and Treatment Plant Performance	11
3.3	3.2 Priority Substances	14
3.3	3.3 Toxicity Testing	15
3.4	Overall Assessment	15
4.0	BIOSOLIDS MONITORING	24
4.1	Introduction	24
4.2	Methods	24
4.3	Results and Discussion	24
4.4	Overall Assessment	24
5.0	RECEIVING ENVIRONMENT MONITORING	27
5.1	Introduction	27
5.2	Methods	27
5.3	Results and Discussion	
5.4	Overall Assessment	
6.0	SEAFLOOR MONITORING	
7.0	OVERALL CONCLUSIONS	
8.0	REFERENCES	

LIST OF TABLES

Table 2.1	SPTP Wastewater and Marine Environment Program Components, Parameters,	
	Frequency and Stations	7
Table 3.1	SPTP Effluent Compliance Monitoring Parameters, Regulatory Limits, Frequency and	
	Sampling Methods	9
Table 3.2	SPTP 2022 Provincial Compliance Monitoring and Treatment Plant Performance Results	
	· · ·	. 13
Table 3.3	Saanich Peninsula Treatment Plant Federal Wastewater Compliance Results 2022	. 14
Table 3.4	Annual Concentrations and Loadings of Frequently Detected Substances (≥50% of the	
	time) in SPTP Effluent, 2022	. 16
Table 3.5	2022 Acute Toxicity Results	. 23
Table 3.6	2022 Chronic Toxicity Results	. 23
Table 4.1	SPTP Sludge Monitoring, 2022	. 25
Table 5.1	SPTP Surface Sites 5 Sampling Events in 30 Days Fecal Coliform 2022	32
Table 5.2	SPTP Surface Sites 5 Sampling Events in 30 Days Enterococci 2022	. 33
Table 5.3	SPTP IDZ Sites 5 Sampling Events in 30 Days Fecal Coliform 2022	34
Table 5.4	SPTP IDZ Sites 5 Sampling Events in 30 Days Enterococci 2022	. 35

LIST OF FIGURES

Figure 3.1	SPWTP Effluent flows from 2011-2022	12
Figure 5.1	SPTP Outfall 2022 Sampling and Reference Locations	29
Figure 5.2	SPTP IDZ Sampling, Fecal Coliform and Enterococci Results - 2022 (5-in-30)	31
Figure 5.3	SPTP Total Nitrogen Sampling Results 2013-2022	37
Figure 5.4	SPWTP Nitrate Sampling Results 2013-2022	38

APPENDICES

Appendix A	Parameter List for Saanich Peninsula Wastewater and Marine Environment Program
Appandix P	Westewater Menitoring

- Appendix B Appendix C
- Wastewater Monitoring Surface Water/IDZ Monitoring

Terms & Abbreviations

ALK	Alkalinity
AVS	Acid Volatile Sulphide
BC OMRR	Organic Matter Recycling Regulations
BOD	Biochemical Oxygen Demand
CALA	Canadian Association for Laboratory Accreditation
CBOD	Carbonaceous Biochemical Oxygen Demand
CCME	Canadian Council of Ministers of the Environment
CFU	Colony-forming unit
Cl	Chloride
COD	Chemical Oxygen Demand
COND	Conductivity
CSSP	Canadian Shellfish Sanitation Program
ENT	Enterococci
ENV	BC Ministry of Environment and Climate Change Strategy
FC	Fecal Coliform
IDZ	Initial Dilution Zone
LWMP	Liquid Waste Management Program
MMAG	Marine Monitoring Advisory Group
NH ₃	Ammonia
NO ₂	Nitrite
NO ₃	Nitrate
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated binhenyl
PDRF	Polybrominated diphenyl ethers
PEOS	Perfluorooctanesulfonic acid
PFHnA	Perfluorobentanoic acid
PFHyA	Perfluorohexanoic acid
PFNA	Perfluorononanoic acid
PFoSA	Perfluorooctanesulfonamide
	Perfluorooctanoic acid
PFPeA	Perfluoropentanoic acid
PFRS	Perfluorobutanesulfonic acid
PFHxS	Perfluorobexanesulfonic acid
PPCP	Pharmaceuticals and personal care products
0+	Quarterly Plus
	Quality Assessment/Quality Control
RSCP	Regional Source Control Program
SCADA	Supervisory Control and Data Acquisition
SDI	Swartz Dominance Index
SPTP	Saanich Peninsula Treatment Plant
SOG	Sediment quality quidelines
	Total abundance
	Total dissolved phosphorus
	Total Kieldahl nitrogen
	Total organic carbon
TP	Total phosphorus
TP	Taxa richness
TRC	Total residual chlorine
	Total Suspended Solide
	Technical Water Ouglity Review Panel
	Inionized Ammonia
	IIS Environmental Protection Agency
US EFA	1 03 Environmental Protection Agency

v/v	Volume per volume
WAD	Weak acid dissociable (WAD) cyanide
WMEP	Wastewater Marine Environment Program
WQG	Water Quality Guidelines
WSER	Wastewater Systems Effluent Regulations

SAANICH PENINSULA TREATMENT PLANT ENVIRONMENTAL MONITORING PROGRAM 2022 REPORT

1.0 BACKGROUND

The Saanich Peninsula Treatment Plant (SPTP) started operations in February 2000. This Capital Regional District (CRD) treatment plant serves North Saanich, Central Saanich and the Town of Sidney, as well as the Victoria International Airport, the Institute of Ocean Sciences and Tseycum, Tsartlip, and Pauquachin First Nations communities. It is a conventional secondary level wastewater treatment plant, which has periodically produced Class A biosolids. The treatment facility discharges undisinfected secondary-treated effluent into the marine receiving environment (Bazan Bay) through an outfall located approximately 1,580 m from the shoreline at a depth of 30 m. Residual sludge from the treatment process is currently disposed of at the Hartland Landfill. The Wastewater and Marine Environment Program (WMEP) includes regular monitoring, as stipulated by the BC Ministry of Environment and Climate Change Strategy (ENV), through the Municipal Wastewater Regulation under the *Environmental Management Act* and the federal Wastewater Systems Effluent Regulations (WSER) under the *Fisheries Act*. The facility operates under a Provincial Operational Certificate (#ME-15445), and the Saanich Peninsula Liquid Waste Management Plan (LWMP) (CRD, 2009a).

The Saanich Peninsula LWMP committed the CRD to carry out a pre- and post-discharge assessment program and to develop a long-term monitoring program. The pre-discharge program was conducted from October 1998 to January 2000. The post-discharge program was initiated in February 2000 (when treatment plant operation began) and completed in February 2001. The results presented in Aquametrix Research Ltd. (2000, 2001a and 2001b) guided the development of the long-term monitoring program in consultation with the Marine Monitoring Advisory Group (MMAG). The MMAG consists of university and government scientists with expertise in the fields of marine biology, chemistry, toxicology, oceanography and public health. This independent group historically reviewed CRD marine monitoring and assessment programs and made recommendations.

Subsequently, the long-term monitoring program was revised in collaboration with ENV, and the regular use of the MMAG discontinued. This revised program was implemented in January 2013 and is summarized in Table 2.1.

In addition, the initial Technical Water Quality Review Panel (TWQRP) suggested a number of conditions that would prompt a reevaluation of the need for disinfection at the SPTP, one of which was 10 years of plant operation. This reevaluation was initiated in 2011 with the MMAG receiving formal delegation to undertake the review. In 2015, the MMAG confirmed that disinfection continues to be unnecessary to meet recreational water quality guidelines around the outfall, and requested that the CRD continue to assess the potential benefits of disinfection to nearby shellfish resources in consultation with First Nation and other shellfish stakeholders. In January 2020, staff advised the Saanich Peninsula Wastewater Commission that installation of disinfection at the SPTP does not appear to present any significant benefit to nearby shellfish resources, as the ongoing surface water bacteriological monitoring indicates that levels around the outfall are well below thresholds to protect shellfish harvesting. Staff therefore recommended that disinfection not be installed at that time. Staff continue to meet with WSÁNEĆ First Nations and other shellfish stakeholders to assess potential future disinfection need, as well as to identify other areas on the Saanich Peninsula where shellfish harvesting could be restored but are outside the influence of the SPTP.

2.0 INTRODUCTION

The objectives of the SPTP WMEP are to:

- Comply with federal and provincial wastewater regulations.
- Assess the effects of the wastewater discharge on the marine environment and the potential for human health risks (related to the presence of bacteria in surface water).

- Determine waste loads to the marine receiving environment.
- Monitor influent, effluent and sludge quality (both as part of regulatory requirements and to optimize treatment plant performance).
- Supply information to the CRD's Regional Source Control Program (RSCP) and treatment plant operators.
- Provide scientific guidance to wastewater managers regarding the use of the marine environment for the disposal of municipal wastewater.

This report presents the results of the 2022 SPTP WMEP in one integrated report. The components of the current WMEP are presented in Table 2.1. These components, the parameters that are measured for each, and the sampling frequency were determined based on regulatory requirements (i.e., for compliance monitoring), a review of the pre- and post-discharge assessment programs, similar monitoring and assessment programs, and recommendations of the MMAG. The following sections present summaries of the methods used for sample collection and processing, and for data analysis of each component of the 2022 WMEP. Detailed information can be found in any technical reports and independent consultant reports referred to in the individual sections. Methods were selected for each of these components, based on internationally recognized standards, and sampling and analytical protocols.

Outfall and reference stations for the sea surface and seafloor components of the WMEP were chosen by the MMAG, following recommendations by the consultant (Aquametrix) that conducted the pre- and postdischarge monitoring program. The reference station was chosen because oceanographic computer modelling indicated it would be far enough away from the plume effects, while being at a similar depth to the outfall stations.

Component	Parameter	Frequency and Stations	
	compliance monitoring	daily to twice per month at the influent and final effluent sampling points ²	
	(CBOD, FC, flow, unionized NH ₃ , pH @	federal – every two weeks	
	15°C, TSS) ¹	provincial – monthly	
	treatment plant performance (ALK, CBOD,		
	COD, COND, CI, NH ₃ , NO ₂ , NO ₃ , BOD,	twice per week to monthly ³ at the influent and final effluent sampling points	
Wastewater	TDP, TKN, TP, TSS) ¹		
Monitoring	influent and effluent priority substances ⁴	quarterly ⁵ at the influent and effluent sampling points	
		annually at the effluent sampling point (Ceriodaphnia dubia survival and reproduction,	
	chronic toxicity testing	Rainbow trout embryo-alevin survival and development, echinoderm (Strongylocentrotus)	
		fertilization, seven-day Pacific topsmelt survival and growth)	
	acute toxicity testing	quarterly at the effluent sampling point (Rainbow trout 96-hour LC50, Daphnia magna	
	acute toxicity testing	48-hour LC50)	
Sludge	metals moisture FC ¹	monitored monthly for informational nurnoses	
Monitoring			
	indicator bactoria (EC_ENT)1	10 times a year (5-in-30 samples collected in the winter and in the summer) at 19 stations	
Surface Motor	Indicator bacteria (FC, ENT)	(14 outfall stations, four IDZ stations and one reference station)	
Monitoring	nutrients (NH ₃ , NO ₂ , NO ₃ , TDP, TKN, TP),	10 times a year (5-in-30 samples collected in the winter and in the summer) at five stations	
Monitoring	COND, salinity, pH, temperature and TOC ¹	(four IDZ stations and one reference station)	
	metals	twice yearly (winter and summer) at five stations (four IDZ stations and one reference station)	
	particle size analysis, TOC ¹ , AVS ¹ and		
Saaflaar	sediment chemistry ⁴	every feur veers at two stations? (and sutfall terminus station and one reference station)	
Seafloor	benthic community structure (including TA,	every rour years at two stations" (one outian terminus station and one reference station)	
	TR, SDI) ⁷		

Table 2.1 SPTP Wastewater and Marine Environment Program Components, Parameters, Frequency and Stations

Notes:

¹ ALK - alkalinity, AVS - acid volatile sulphide, CBOD - carbonaceous biochemical oxygen demand, COD - chemical oxygen demand, COND - conductivity, CI - chloride, FC - fecal coliforms, ENT - enterococci, NH₃ - ammonia, NO₃ - nitrate, NO₂ - nitrite, BOD - biochemical oxygen demand, TDP - total dissolved phosphorus, TKN - total Kjeldahl nitrogen, TOC - total organic carbon, TP - total phosphorus, TSS - total suspended solids

² Frequency is listed in Appendix A.

³ Frequency depends on the operation of the facility and what the operators need to optimize treatment plant performance.

⁴ All parameters are listed in Appendix A.

⁵ January and July additional Q+ sampling conducted one day before and one day after the quarterly sampling event.

⁶ Conducted in 2020. Next time will be 2024, 2028, etc.

⁷ TA - total abundance, TR - taxa richness, SDI - Swartz Dominance index

3.0 WASTEWATER MONITORING

3.1 Introduction

The CRD conducts wastewater monitoring on a regular basis at the SPTP to assess compliance with the operational certificate under the LWMP and the federal WSER, to assess treatment plant performance and to profile the physical and chemical constituents of treated wastewater before it is released to the marine receiving environment. These data provide an indication of which components may be of concern in the receiving environment and can be used to direct the efforts of the WMEP and the CRD's RSCP.

Wastewater monitoring at the SPTP consists of quarterly composite analyses for all priority substances, supplemented by additional "quarterly plus" (Q+) composite sampling occurring one day before and one day after the quarterly sampling events in January and July. The Q+ monitoring program is intended to increase the precision of the quarterly sampling events for key substances of interest (Appendix A).

The list of priority substances was adapted from the US Environmental Protection Agency (US EPA) National Recommended Water Quality Criteria; Priority Toxic Pollutants list (US EPA, 2002). The CRD reviews its list on a periodic basis to determine the need to delete or add substances depending on new developments in terms of analytical techniques, potential presence in wastewaters and potential effects on human health and the receiving environment, alignment with the Vancouver Aquarium's Pollution Tracker parameters, and upon ENV review. Influent is analyzed for a subset list of substances (Appendix A).

Detailed statistical trend analyses are undertaken every three to five years to quantitatively assess temporal trends in concentrations and loadings of wastewater parameters. In 2012, Golder Associates (Golder, 2013) updated the previous trend assessment to include the 2009-2011 results, expanding the total SPTP dataset from 2000-2011. Results of this assessment were presented in the 2011 annual report (CRD, 2012). The most recent trend assessment was completed in 2017 (Golder, 2019) and included the next three years of wastewater data (2012-2015). Results were included in the 2016 annual report (CRD, 2017). The next trend assessment for the SPTP is planned for the next one to two years.

3.2 Methods

Information on wastewater sampling and analytical methods is presented below and in any independent consultants' reports referenced in the individual sections. Sampling and analytical methods used for each of these components were based on recognized standards and protocols (APHA, 1992; BC MWLAP, 2003). Samples were either collected as composites (i.e., over a 24-hour period) or individual grabs (i.e., discrete one-time) depending on the parameters that were being analyzed.

3.2.1 Compliance Monitoring and Treatment Plant Performance

The CRD operators and sampling technicians regularly monitor effluent quality and flow, as required by the ENV operational certificate under the SPTP LWMP and federal regulations. Table 3.1 presents parameters, effluent regulatory limits, frequency and sampling methods used to assess compliance.

Influent and effluent samples were also collected periodically to assess the efficiency of the treatment plant processes (see Table 2.1 for a list of parameters and monitoring frequency). Flow was measured continuously with a Supervisory Control and Data Acquisition (SCADA) system.

Operators and technicians collected composite influent and effluent samples using on-site automated ISCO[™] samplers (http://www.isco.com). Influent samples were collected from a sampling point situated where the wastewater had entered the treatment plant and been screened to <6mm, but prior to transfer to the settling tanks (i.e., before primary treatment). Effluent samples were collected from a sampling port situated where the final effluent is discharged to the marine receiving environment. Sub-samples (consisting of 400 mL) were collected every 30 minutes and composited into one sample representing the 24-hour period. Grab samples (i.e., one-time discrete samples) were collected for the analysis of parameters not suited to composite sampling, such as fecal coliforms, pH, oil and grease, and volatile organic compounds. Laboratory analyses including parameters required by WSER were conducted at Bureau Veritas Laboratories Inc. (Burnaby, BC) a Canadian Association for Laboratory Accreditation (CALA) certified lab. SGS AXYS Analytical Services (Sidney, BC) was engaged for high-resolution analysis.

Table 3.1 SPTP Effluent Compliance Monitoring Parameters, Regulatory Limits, Frequency and Sampling Methods

Parameter	Effluent Regulatory Limit	Required Frequency of Monitoring⁴	Sampling Method
CBOD	provincial – 45 mg/L maximum federal – 25 mg/L average	provincial – 2x per week federal – 2x per month	24-hr composite
TSS ¹	provincial – 45 mg/L maximum federal – 25 mg/L average	provincial – 2x per week federal – 2x per month	24-hr composite
flow ¹	24,953 m ³ /day (average daily) ² 56,000 m ³ /day (maximum daily)	continuously	SCADA ³
pH ¹	6-9	2x per week	grab
unionized ammonia ¹ , pH @ 15°C	provincial – required, but no limit federal –1.25 mg/L maximum	provincial – monthly federal – 2x per month	24-hr composite
fecal coliforms	required, but no limit	provincial – monthly	grab
total residual chlorine	federal – 0.02 mg/L average	only when used as part of the treatment process ⁵	grab

Notes:

¹ Parameters which are also analyzed in influent.

² Limit determined on an annual basis = [12,200 m³/d * (1.0316 ^{calendar year-1999})]

³ SCADA system

⁴ As described in the operating certificate or the federal WSER.

⁵ Chlorine was not used as part of the SPTP treatment process in 2022. As such, total residual chlorine was not monitored.

CBOD = carbonaceous biochemical oxygen demand; TSS = total suspended solids; FC = fecal coliforms

3.2.2 **Priority Substances**

CRD technicians collected influent and effluent samples, using methods similar to those used for compliance parameters, but with the following adaptations:

- Sampling equipment (i.e., hoses, sieves and carboys) was cleaned thoroughly prior to use by an external private laboratory (SGS AXYS Analytical Services), following trace cleaning procedures, including triple rinses with solvents, acids and distilled water.
- The CRD WMEP automated ISCO[™] samplers (different from the on-site SPTP automated ISCO[™] samplers used by the operators for the compliance and treatment plant performance monitoring) were used to collect influent and effluent composite samples. Two different samplers were used: one for influent and one for effluent. Sub-samples (consisting of 400 mL) were collected every 30 minutes and composited into one sample representing the 24-hour period.
- Composite samples were collected into a fluorinated, pre-cleaned 20 L carboy and continuously and thoroughly mixed before and during sample splitting to ensure sample homogeneity.

• Grab samples were collected using the ISCO[™] sampler manual pumping setting (i.e., at the end of each composite sample interval) and transferred into appropriate sample bottles on site.

Sampling technicians immediately dispatched the samples to qualified laboratories (i.e., certified by the Canadian Association for Laboratory Accreditation) to conduct chemical analyses. Bureau Veritas (Burnaby, BC) conducted analyses for conventional parameters including federally regulated parameters (i.e., pH @ 15°C, unionized ammonia, TSS, CBOD) and priority substances; and SGS AXYS Analytical Services conducted analyses for high-resolution parameters. Laboratory and CRD staff chose analytical methods to ensure that method detection limits were low enough for comparisons to ENV approved (BCMoE&CCS, 2019) and working (BCMoE&CCS, 2017) WQG and the Canadian Council of Ministers of the Environment (CCME 2003) *Canadian Water Quality Guidelines for the Protection of Aquatic Life*.

Wastewater was analyzed for a comprehensive list of priority substances that included conventional variables (included for the assessment of potential effects on the marine receiving environment and for comparison to the compliance treatment plant performance results), metals, halogenated compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, polychlorinated biphenyls, pesticides, pharmaceuticals and personal care products, nonylphenols and fluorinated compounds (Appendix A).

DATA QUALITY ASSESSMENT

The CRD and laboratory staff followed rigorous quality assessment/quality control (QA/QC) procedures for both field sampling and laboratory analyses. Within each batch that was analyzed quarterly (i.e., four batches in 2022 that included samples from McLoughlin Point WWTP), one sample was randomly chosen for laboratory triplicate analysis, one sample was randomly chosen for field triplicate analysis, and one sample for a matrix spike. Both Bureau Veritas and SGS AXYS Analytical also conducted internal QA/QC analysis, including method analyte spikes, method blanks and standard reference materials.

DATA ANALYSIS

Percent frequencies of detection were determined for each substance by adding the number of times the compound was detected, dividing it by the total number of samples collected in the year and multiplying it by 100. A frequency of greater than 50% was selected as a percentage above which meaningful statistical analyses could be conducted. For non-detectable results (i.e., less than the method detection limits), a value of half the method detection limit was used for calculating the substance mean concentrations. For those substances detected greater than 50% of the time in the effluent, predictions of substance concentrations in the receiving environment were made by dividing maximum substance concentrations in effluent by the estimated minimum initial dilution factor of 153:1 (Hayco, 2005). This estimated minimum initial dilution factor of 153:1 (Hayco, 2005). This estimated minimum initial dilution factor of 140 concentrations, as well as the original sample concentrations (i.e., without the initial dilution factor), were compared to:

- ENV approved (BCMoE&CCS, 2019) and working (BCMoE&CCS, 2017) WQG,
- CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME, 2003), and
- Health Canada guidelines for the protection of human health (Health Canada, 2012).

These comparisons give an indication of the potential for receiving environment effects.

Annual loadings were determined by first calculating the quarterly loadings (January, April, July and October), averaging these values and multiplying by the number of days in the year. Quarterly loadings were calculated by averaging the total flow over the two sampling days and multiplying the average flow by the concentration of each substance measured that quarter. Loadings were calculated only for substances detected in >50% of sampling events.

Substances for which minimum initial dilution and loading calculations were not appropriate were noted as n/a (not applicable). For example, pH, conductivity and hardness do not lend themselves to loading calculations (e.g., pH is a discrete measurement and calculating a loading over time is not appropriate).

3.2.3 Toxicity Testing

Acute toxicity testing refers to the assessment of adverse effects of a substance resulting from either a single exposure or from multiple exposures to a substance in a short period of time (usually less than 24 hours). Acute toxicity testing was conducted by Nautilus Environmental (Burnaby, BC) on a quarterly basis using effluent collected from the SPTP in January, April, July and October. Tests consisted of a 96-hour Rainbow trout LC50 and a 48-hour *Daphnia magna* LC50. The LC50 test measures the lethal concentration that kills 50% of organisms over the test period. Anything less than 100% v/v is a fail.

Chronic toxicity testing refers to the assessment of adverse health effects from repeated exposures, often at lower levels, to a substance over a longer period of time (weeks or years). Chronic toxicity results are reported as either the LC50, which is the concentration at which 50% of the test organisms die during the test period, or as the EC50 or EC25, which are the concentrations at which a negative impact is observed on 50% or 25%, respectively, of the organisms in the specified test period (e.g., decreased fertilization or growth). Chronic toxicity testing was conducted by Nautilus Environmental using effluent collected from the SPTP in November and December. Tests consisted of a seven-day *Oncorhynchus mykiss* (Rainbow trout) embryo-alevin, a seven-day *Atherinops affinis* (Topsmelt) survival and growth, a six-day *Ceriodaphnia* survival and reproduction, and an echinoid fertilization test.

3.3 Results and Discussion

3.3.1 Compliance Monitoring and Treatment Plant Performance

Flow data are presented in Appendix B1. Flow measurements indicate that the mean daily flow in 2022 was slightly lower than in 2021 (9,833 m³/d in 2022 versus 10,073 m³/d in 2021). There were no exceedances of the permitted average or maximum daily allowable flow in 2022.

Figure 3.1 presents the SPTP flows from 2011-2022 indicating that flows are not increasing significantly over time. Provincial wastewater compliance monitoring and treatment plant performance monitoring results are summarized in Table 3.2. Federal wastewater compliance parameters are summarized in Table 3.3. The complete raw data sets are presented in Appendices B2 (influent) and B3 (effluent).

In 2022, all SPTP effluent results were below provincial and federal regulatory limits.

Table 3.2 SPTP 2022 Provincial Compliance Monitoring and Treatment Plant Performance Results

Devemptor and Linit	Effluent			Influent		Effluent			
Parameter and Onit	Regulatory Limit	n	Mean	Min	Max	n	Mean	Min	Max
CBOD (mg/L)	45 maximum	4	223	190	250	111	5	1	37
TSS (mg/L)	45 maximum	4	149	56	240	28	10	1.6	21
$Flow (m^{3}/d)$	24,953 average daily					365	9,833	6,357	25.264
	56,000 maximum daily								25,364
pH (pH units)	6-9	32	7.38	7.1	7.84	32	7.19	6.9	7.72
NH₃ (mg/L N)	required, but no limit	32	30.4	0.44	45	31	3.7	0.02	12.8
Fecal coliform (CFU/100 mL)	required, but no limit	8	10,500,000	1,600,000	47,000,000	32	449,057	720	9,900,000
Alkalinity (mg/L)	*	12	214	178	237	12	57	23.7	88
Chloride (mg/L)	*	7	96	71	120	7	94	75	140
COD (mg/L)	*	56	1,440	222	11,000	56	803	33	4,250
BOD (mg/L)	*	56	243	62.9	382	105	15	3.6	39.4
Nitrate (mg/L N)	*	28	0.44	0.01	11.3	28	12.2	7.2	15.4
Nitrite (mg/L N)	*	32	1.42	0.001	42	32	46	0.032	785
TKN (mg/L N)	*	28	44.1	14.9	64.9	28	338	0.2	7,650
TP (mg/L P)	*	20	5.8	2.4	11	20	3	0.171	6.47
Notes:	•			•			•	•	·

CBOD = carbonaceous biochemical oxygen demand, COD = chemical oxygen demand, FC = fecal coliforms, NH₃ = ammonia, BOD = biochemical oxygen demand, TDP = total dissolved phosphorus, TKN = total Kjeldahl nitrogen, TP = total phosphorus, TSS = total suspended solids

Average daily flows limit determined on an annual basis = $[12,200 \text{ m}^3/\text{d}^* (1.0316^{\text{calendar year} \cdot 1999})]$.

* Measured to assess treatment plant performance.

Shaded value indicates exceedance to permitted maximum.

Saanich Peninsula Treatment Plant Secondary Effluent									
	CBOD (mg/L)	Unionized ammonia (mg/L N)	pH @ 15°C	TSS (mg/L)					
Federal Limit	25 average	1.25 max		25 average					
	<i>n</i> =111	<i>n</i> =28	<i>n</i> =28	<i>n</i> =28					
January	4.4	0.0003	6.5	7.3					
February	4.2	0.05	6.4	7.5					
March	3.5	0.05	6.8	11.0					
April	4.0	0.05	6.9	7.0					
May	9.7	0.05	6.8	17.0					
June	3.0	0.05	6.9	5.0					
July	3.8	0.03	6.6	7.9					
August	4.4	0.05	7.0	9.0					
September	2.9	0.05	6.8	8.5					
October	5.1	0.04	6.7	10.9					
November	6.1	0.05	6.4	12.5					
December	4.4	0.05	6.7	16.5					

Table 3.3 Saanich Peninsula Treatment Plant Federal Wastewater Compliance Results 2022

3.3.2 **Priority Substances**

Over 550 priority substances were analyzed in the SPTP influent and effluent, including high-resolution substances on a quarterly basis. Approximately 39% of these were detected in effluent in greater than 50% of the samples and are listed in Table 3.4. These include most of the conventional variables (TSS, BOD, CBOD, nutrients, etc.), metals, some organics and high-resolution parameters.

Table 3.4 presents annual mean, minimum and maximum effluent concentrations, and loadings of the priority substances detected in greater than 50% of sampling events. The 1:153 estimated minimum initial dilution factor (Hayco, 2005) was applied to the maximum concentrations and the resulting concentrations were then compared to the ENV approved (BCMoE&CCS, 2019) and working (BCMoE&CCS, 2017) WQG, the CCME *Water Quality Guidelines for the Protection of Aquatic Life* (CCME, 2003), and the Health Canada *Guidelines for Canadian Recreational Water Quality* (Health Canada, 2012) to assess predicted environmental concentrations. It should be noted that not all substances (e.g., alkalinity, conductivity, hardness and pH) discharged to the marine receiving environment could be assessed by extrapolating effluent concentrations using predicted minimum initial dilution. These parameters are not suitable for effluent dilution calculations (e.g., pH of 7.0 cannot be divided by estimated minimum initial dilution of 1:153).

The maximum concentrations of most parameters were below guidelines in undiluted effluent (i.e., prior to discharge). Parameters not meeting WQG in undiluted effluent (maximum concentrations) included: enterococci, WAD cyanide, nitrogen, copper, zinc, and total polychlorinated biphenyls (high-res), (Table 3.4); these exceedances have also been observed in previous years. All results were below WQG after application of the estimated minimum initial dilution factor (i.e., the maximum predicted concentration in the environment), with the exception of enterococci. Effluent concentrations have consistently been below WQG from 2000-2022, after estimated minimum initial dilution has been applied (CRD, 2002-2021). CRD staff will continue to monitor effluent to determine whether exceedances of BC WQG are changing in frequency over time.

3.3.3 Toxicity Testing

Table 3.5 presents the results from the 2022 acute toxicity testing. There was no mortality observed for either acute toxicity test (Rainbow trout or *Daphnia*) in any of the samples (January, April, July and October). Table 3.6 presents the results from the 2022 chronic toxicity testing indicating no impact to organisms when exposed to 100% effluent.

3.4 Overall Assessment

Overall, the 2022 wastewater monitoring results were generally consistent with previous years. There were no exceedances to permitted compliance parameter requirements stipulated under the provincial operational certificate and federal WSER, indicating that wastewaters, from an operational perspective, were as expected. In addition, because all priority substances met applicable WQG in the marine receiving environment (following the application of estimated minimum initial dilution factors), with the exception of bacteriological indicators, it is not likely that significant effects on aquatic life will occur as a result of the substances being discharged. The use of an estimated minimum initial dilution factor allows for a conservative (i.e., protective) estimate of potential effects because the predicted average initial factors are actually much higher in the marine receiving environments around the outfall (Hayco, 2005). Direct risk to human health and shellfish harvesting, as a result of the bacteriological indicator exceedances in effluent, was assessed via surface water and water column monitoring in the receiving environment (see Section 5.0).

Table 3.4 Annual Concentrations and Loadings of Frequently Detected Substances (≥50% of the time) in SPTP Effluent, 2022

Parameter Name	Unit Code	% Freq	Average Concentration	Min	Мах	Max Diluted (1:153)	Average Eff Load (kg/year)	WQG
Bacteria								
Enterococci	CFU/100 mL	100	7,574	860	22,933	150		35d, 70d
Fecal Coliforms	CFU/100 mL	100	145,049	720	910,000	5,948		
Conventionals							•	
Alkalinity - Bicarbonate	mg/L	100	58.3	43.0	80.0	0.52		
Alkalinity - Total - Ph 4.5	mg/L	100	47.5	35.0	66.0	0.43		
BOD	mg/L	100	13.73	3.90	19.0	0.12		
CBOD	mg/L	75	5.20	2.00	8.20	0.05		
COD	mg/L	100	131	40.0	373	2.44		
H2S	mg/L	100	0.03	0.03	0.03	0.0002	221	
Hardness (as CaCO3)	mg/L	100	90.3	84.1	105	0.69		
N - Nh3 (As N)	mg/L	100	2.23	0.06	4.00	0.03	120,435	19.7
N - Total (As N)	mg/L	100	15.3	12.2	19.3	0.13	635,910	3.7a
Organic Carbon	mg/L	100	561	12.0	2,200	14.4	30,074,742	
P - Po4 - Total (As P)	µg/L	100	2,399	171	5,557	36.3	201,211	
рН	рН	100	7.37	7.16	7.72	0.05		7.0-8.7b.c
pH @ 15° C	рН	100	6.53	6.34	6.80	0.04		
Sulfide	mg/L	100	0.02	0.02	0.02	0.0002	1,451	
TSS	mg/L	100	5.10	1.60	8.80	0.06	216,236	
Total/SAD Cyanide	mg/L	100	0.003	0.001	0.01	0.00004	301.74	
WAD Cyanide	mg/L	100	0.002	0.001	0.01	0.00004	271	0.001a
Metals								
Aluminum	µg/L	100	21.4	18.4	23.2	0.15	1,815	
Antimony	µg/L	100	0.26	0.22	0.32	0.002	23.3	
Arsenic	µg/L	100	0.27	0.23	0.31	0.002	22.1	12.5a,c
Barium	µg/L	100	7.71	7.08	8.56	0.06	634	
Cadmium	µg/L	100	0.02	0.01	0.03	0.0002	1.52	0.12b,c
Calcium	mg/L	100	21.3	20.5	22.9	0.15	1,812,828	
Chromium	µg/L	100	0.48	0.34	0.61	0.004	38.6	56b,c
Cobalt	µg/L	100	0.27	0.22	0.33	0.002	23.0	
Copper	µg/L	100	10.4	6.18	15.2	0.10	826	<2(lt), 3(st)a
Iron	µg/L	100	107	73.8	148	0.97	8,420	
Lead	µg/L	100	0.36	0.25	0.53	0.003	27.65	<2(lt), 140(st)a

Parameter Name	Unit Code	% Freq	Average	Min	Max	Max Diluted	Average Eff Load	WQG
		701109	Concentration		Шах	(1:153)	(kg/year)	ngo
Magnesium	mg/L	100	9.01	7.98	11.7	0.08	777,228	
Manganese	µg/L	100	32.9	27.6	37.5	0.24	2,805	100b
Molybdenum	µg/L	100	0.91	0.62	1.20	0.01	79.31	
Nickel	µg/L	100	1.87	1.41	2.44	0.02	159	8.3b
Potassium	mg/L	100	13.4	9.07	17.8	0.12	1,112,205	
Selenium	µg/L	100	0.14	0.12	0.18	0.001	12.1	2a
Silver	µg/L	75	0.02	0.01	0.02	0.0001	1.35	1.5(lt), 3(st)a
Tin	µg/L	100	0.49	0.38	0.64	0.004	41.3	
Zinc	µg/L	100	30.7	23.1	39.1	0.26	2,568	10(lt), 55(st)a
Metals Other					•			
Monobutyltin	µg/L	67	0.01	0.001	0.03	0.0002	0.37	
Monobutyltin Trichloride	µg/L	100	0.02	0.01	0.05	0.0003	0.66	
Organics					•			
1,4-Dioxane	µg/L	75	0.38	0.22	0.71	0.005	21.78	
1,7-Dimethylxanthine	ng/L	100	257	231	298	1.95	7.74	
Pentachlorobenzene	ng/L	75	0.05	0.03	0.11	0.001	0.002	
Perfluorobutanoic acid	ng/L	100	20.1	11.7	41.8	0.27	0.90	
Trichloromethane	µg/L	100	1.38	1.20	1.80	0.01	57.9	
Nonylphenols					-			
4-n-Octylphenol	ng/L	75	1.33	0.77	2.22	0.01	0.06	
4-Nonylphenol Diethoxylates	ng/L	100	201	66.9	433	2.83	9.85	
4-Nonylphenol Monoethoxylates	ng/L	100	456	238	689	4.50	20.01	700b
Np	ng/L	100	57.2	17.4	109	0.71	2.66	700b
High Resolution								
РАН								
1-Methylphenanthrene	ng/L	75	0.97	0.45	1.40	0.01	0.04	
2,3,5-trimethylnaphthalene	ng/L	100	1.75	1.17	2.38	0.02	0.07	
2,6-dimethylnaphthalene	ng/L	100	1.72	0.76	3.32	0.02	0.07	
Dibenzothiophene	ng/L	100	1.72	1.13	2.70	0.02	0.07	
Phenanthrene	ng/L	75	6.68	5.06	10.02	0.07	1.22	
PBDE								
PBDE 12/13	pg/L	75	1.63	0.87	2.80	0.02	0.0001	
PBDE 15	pg/L	100	2.25	1.55	3.14	0.02	0.0001	
PBDE 17/25	pg/L	100	15.8	7.92	26.9	0.18	0.001	
PBDE 28/33	pg/L	100	35.7	16.0	54.9	0.36	0.001	
PBDE 37	pg/L	100	6.74	2.97	9.64	0.06	0.0002	

Parameter Name	Unit Code	% Freq	Average Concentration	Min	Мах	Max Diluted (1:153)	Average Eff Load (kg/year)	WQG
PBDE 47	pa/L	100	1,353	677	2.000	13.1	0.04	
PBDE 49	pa/L	100	31.7	13.9	47.7	0.31	0.001	
PBDE 51	pa/L	100	3.86	1.97	6.07	0.04	0.0001	
PBDE 66	pg/L	100	32.0	17.6	46.4	0.30	0.001	
PBDE 71	pg/L	100	5.21	2.90	7.70	0.05	0.0002	
PBDE 79	pg/L	75	13.9	1.35	41.1	0.27	0.001	
PBDE 85	pg/L	100	55.7	20.5	84.9	0.55	0.002	
PBDE 99	pg/L	100	1,299	539	2,050	13.4	0.04	
PBDE 100	pg/L	100	266	114	418	2.73	0.01	
PBDE 119/120	pg/L	100	3.98	1.88	6.49	0.04	0.0001	
PBDE 138/166	pg/L	100	15.5	5.79	26.7	0.17	0.0005	
PBDE 140	pg/L	100	4.41	1.64	7.63	0.05	0.0001	
PBDE 153	pg/L	100	113	43.2	181	1.18	0.004	
PBDE 154	pg/L	100	87.1	33.0	145	0.95	0.003	
PBDE 155	pg/L	100	7.82	3.71	12.4	0.08	0.0002	
PBDE 183	pg/L	100	15.9	6.38	25.7	0.17	0.0005	
PBDE 203	pg/L	100	13.3	6.10	19.1	0.12	0.0004	
PBDE 206	pg/L	100	61.8	3.80	115	0.75	0.002	
PBDE 207	pg/L	100	105	68.8	156	1.02	0.003	
PBDE 208	pg/L	100	66.1	58.9	84.4	0.55	0.002	
PBDE 209	pg/L	100	1,676	963	2,250	14.7	0.055	
PCB								
PCB 1	pg/L	100	9.30	3.49	22.3	0.15	0.0004	
PCB 2	pg/L	100	3.34	2.24	4.77	0.03	0.0001	
PCB 3	pg/L	100	4.68	3.14	8.32	0.05	0.0002	
PCB 4	pg/L	75	6.01	5.65	6.29	0.04	0.0003	
PCB 6	pg/L	75	3.95	2.69	5.51	0.04	0.0002	
PCB 8	pg/L	100	9.15	5.48	11.6	0.08	0.0004	
PCB 11	pg/L	100	59.5	35.3	83.7	0.55	0.002	
PCB 15	pg/L	100	7.68	4.11	11.3	0.07	0.0003	
PCB 16	pg/L	100	5.51	2.69	8.44	0.06	0.0002	
PCB 17	pg/L	100	4.68	2.47	6.63	0.04	0.0002	
PCB 18/30	pg/L	100	10.0	6.56	14.4	0.09	0.0004	
PCB 19	pg/L	100	2.19	1.78	2.57	0.02	0.0001	
PCB 20/28	pg/L	100	18.5	10.5	26.4	0.17	0.0007	
PCB 21/33	pg/L	100	9.33	5.06	13.2	0.09	0.0004	
PCB 22	pg/L	100	7.30	3.92	10.7	0.07	0.0003	
PCB 26/29	pg/L	100	2.92	1.61	3.77	0.02	0.0001	
PCB 31	pg/L	100	15.04	8.51	22.1	0.14	0.001	

		0/ 5	Average	Min	Mov	Max	Average	WOO
Parameter Name	Unit Code	% Freq	Concentration	IVIIII	Wax	(1·153)	(kg/year)	WQG
PCB 32	pa/L	100	3.44	2.36	5.29	0.03	0.0001	
PCB 35	pa/L	75	1.77	1.19	2.49	0.02	0.0001	
PCB 37	pa/L	100	4.93	2.61	7.56	0.05	0.0002	
PCB 40/41/71	pg/L	100	6.59	3.04	9.95	0.07	0.0003	
PCB 42	pg/L	75	3.17	1.55	5.46	0.04	0.0001	
PCB 44/47/65	pg/L	100	38.2	12.8	60.2	0.39	0.002	
PCB 45/51	pg/L	100	6.46	2.70	12.2	0.08	0.0003	
PCB 48	pg/L	75	2.68	1.13	4.38	0.03	0.0001	
PCB 49/69	pg/L	100	8.11	4.10	12.6	0.08	0.0003	
PCB 50/53	pg/L	100	2.03	1.12	2.80	0.02	0.0001	
PCB 52	pg/L	100	19.4	11.7	28.3	0.18	0.001	
PCB 56	pg/L	100	4.73	2.72	7.12	0.05	0.0002	
PCB 60	pg/L	75	2.93	1.58	4.28	0.03	0.0001	
PCB 61/70/74/76	pg/L	100	20.9	11.0	30.2	0.20	0.001	
PCB 64	pg/L	100	5.95	2.22	8.98	0.06	0.0002	
PCB 66	pg/L	100	9.11	4.42	14.8	0.10	0.0004	
PCB 68	pg/L	75	3.12	1.42	5.71	0.04	0.0001	
PCB 82	pg/L	75	2.61	1.05	3.65	0.02	0.0001	
PCB 83/99	pg/L	100	12.8	7.12	20.2	0.13	0.001	
PCB 84	pg/L	75	5.24	2.65	7.99	0.05	0.0002	
PCB 85/116/117	pg/L	100	4.03	2.28	6.37	0.04	0.0002	
PCB 86/87/97/108/119/125	pg/L	100	16.1	7.91	24.3	0.16	0.001	
PCB 88/91	pg/L	75	3.01	1.79	4.31	0.03	0.0001	
PCB 90/101/113	pg/L	100	19.6	10.5	29.5	0.19	0.001	
PCB 92	pg/L	100	3.83	1.86	6.21	0.04	0.0002	
PCB 93/95/98/100/102	pg/L	100	17.0	9.07	24.2	0.16	0.001	
PCB 105	pg/L	100	6.15	3.21	9.59	0.06	0.0002	900a
PCB 109	pg/L	75	1.50	0.96	2.08	0.01	0.0001	
PCB 110/115	pg/L	100	20.8	11.7	30.4	0.20	0.001	
PCB 118	pg/L	100	18.1	10.6	30.5	0.20	0.001	
PCB 128/166	pg/L	100	2.45	1.71	3.37	0.02	0.0001	
PCB 129/138/160/163	pg/L	100	19.6	13.8	27.8	0.18	0.001	
PCB 132	pg/L	100	6.17	3.58	8.81	0.06	0.0002	
PCB 135/151/154	pg/L	100	6.34	3.78	9.00	0.06	0.0003	
PCB 136	pg/L	75	2.07	0.90	3.38	0.02	0.0001	
PCB 141	pg/L	75	2.85	1.96	3.98	0.03	0.0001	
PCB 144	pg/L	75	1.11	0.74	1.45	0.01	0.00005	
PCB 146	pg/L	100	4.00	2.20	5.97	0.04	0.0002	

Parameter Name	Unit Code	% Freq	Average	Min	Max	Max Diluted	Average Eff Load	WQG
			Concentration			(1:153)	(kg/year)	
PCB 147/149	pg/L	100	13.4	6.88	22.4	0.15	0.001	
PCB 153/168	pg/L	100	20.1	13.4	29.6	0.19	0.001	
PCB 155	pg/L	75	1.67	0.87	2.92	0.02	0.0001	
PCB 156/157	pg/L	75	2.37	1.69	3.26	0.02	0.0001	
PCB 158	pg/L	75	1.74	0.87	2.46	0.02	0.0001	
PCB 164	pg/L	75	1.35	1.05	1.62	0.01	0.0001	
PCB 170	pg/L	100	3.41	2.27	4.56	0.03	0.0001	
PCB 174	pg/L	100	3.31	1.85	4.63	0.03	0.0001	
PCB 177	pg/L	100	2.09	1.53	2.66	0.02	0.0001	
PCB 179	pg/L	75	1.60	0.79	2.34	0.02	0.0001	
PCB 180/193	pg/L	100	9.61	6.42	13.1	0.09	0.0004	
PCB 183/185	pg/L	75	2.62	1.37	3.81	0.02	0.0001	
PCB 184	pg/L	100	2.42	1.38	4.07	0.03	0.0001	
PCB 187	pg/L	100	6.10	3.45	10.1	0.07	0.0002	
PCB 194	pg/L	75	1.76	1.02	2.10	0.01	0.0001	
PCB 198/199	pg/L	75	1.98	1.26	2.84	0.02	0.0001	
PCB 203	pg/L	75	1.59	1.05	2.17	0.01	0.0001	
PCB 206	pg/L	75	2.29	1.29	3.74	0.02	0.0001	
PCB 208	pg/L	75	1.63	1.03	2.51	0.02	0.0001	
PCB 209	pg/L	75	2.15	1.53	3.16	0.02	0.0001	
PCB Teq 3	pg/L	100	0.01	0.01	0.01	0.0001	0.0000001	
PCB Teq 4	pg/L	100	0.88	0.88	0.88	0.01	0.00001	
PCBs Total	pg/L	100	465	192	697	4.56	0.02	100a
PCDD								
1,2,3,4,6,7,8-HPCDD	pg/L	75	0.84	0.53	1.06	0.01	0.00004	
OCDD	pg/L	100	3.16	2.49	4.39	0.03	0.0001	
Total Hepta-Dioxins	pg/L	75	0.79	0.53	0.90	0.01	0.00003	
PFOS								
Perfluorodecanoic acid (PFDA)	ng/L	100	1.13	0.79	1.55	0.01	0.05	
Perfluoroheptanoic Acid (PFHpA)	ng/L	100	2.40	1.84	3.48	0.02	0.11	
Perfluorohexanoic Acid (PFHxA)	ng/L	100	9.36	7.30	12.5	0.08	0.40	
Perfluorononanoic Acid (PFNA)	ng/L	75	0.83	0.55	1.20	0.01	0.04	
Perfluorooctanesulfonic acid (PFOS)	ng/L	100	3.66	3.03	4.33	0.03	0.16	
Perfluorooctanoic acid (PFOA)	ng/L	100	4.78	4.05	5.47	0.04	0.21	
Perfluoropentanoic Acid (PFPeA)	ng/L	100	13.9	10.2	22.0	0.14	0.61	
PFBS	ng/L	100	2.48	1.20	4.22	0.03	0.12	
PFHxS	ng/L	100	3.45	1.85	4.42	0.03	0.16	
Pesticides								
2,4-DDD	ng/L	100	3.55	1.30	5.67	0.04	0.14	

Page 20

Parameter Name	Unit Code	% Freq	Average	Min	Max	Max Diluted	Average Eff Load	WQG
			Concentration			(1:153)	(kg/year)	
4,4-DDE	ng/L	75	0.12	0.06	0.21	0.001	0.01	
Beta-Endosulfan	ng/L	100	0.53	0.37	0.79	0.01	0.02	1.6b
Beta-Hch Or Beta-Bhc	ng/L	75	0.11	0.06	0.21	0.001	0.005	
Hch, Gamma	ng/L	75	0.13	0.07	0.21	0.001	0.01	
Hexachlorobenzene	ng/L	75	0.05	0.03	0.11	0.001	0.00	
PPCP								
2-Hydroxy-Ibuprofen	ng/L	100	1,875	364	3,820	25.0	68.8	
Acetaminophen	ng/L	100	480	7.21	784	5.12	15.2	
Androstenedione	ng/L	100	6.02	3.54	7.89	0.05	0.25	
Azithromycin	ng/L	100	358	203	590	3.86	11.4	
Bisphenol A	ng/L	75	89.6	9.67	199	1.30	3.32	900b
Caffeine	ng/L	100	243	148	428	2.80	7.84	
Carbamazepine	ng/L	100	521	487	566	3.70	15.3	
Ciprofloxacin	ng/L	100	194	136	251	1.64	5.54	
Clarithromycin	ng/L	100	131	122	138	0.90	3.89	
Dehydronifedipine	ng/L	100	13.4	9.07	17.4	0.11	0.38	
Diltiazem	ng/L	100	420	361	490	3.20	12.4	
Diphenhydramine	ng/L	100	489	283	604	3.95	13.7	
Erythromycin-H2O	ng/L	100	41.0	5.70	81.6	0.53	1.18	
Estrone	ng/L	75	71.7	2.84	159	1.04	2.84	
Fluoxetine	ng/L	100	29.7	12.4	44.0	0.29	0.82	
Furosemide	ng/L	100	414	219	650	4.25	19.0	
Gemfibrozil	ng/L	100	25.4	5.85	63.5	0.42	0.98	
Glyburide	ng/L	100	2.64	1.69	3.87	0.03	0.11	
Hydrochlorothiazide	ng/L	100	1,978	1,210	2,640	17.3	80.8	
Ibuprofen	ng/L	100	480	86.3	1,240	8.10	22.9	
Lincomycin	ng/L	67	1.44	0.66	2.66	0.02	0.05	
Miconazole	ng/L	100	1.39	0.62	2.08	0.01	0.04	
Naproxen	ng/L	100	501	324	717	4.69	21.3	
Ofloxacin	ng/L	100	20.9	14.0	28.8	0.19	0.59	
Sulfamethoxazole	ng/L	100	355	307	419	2.74	10.4	
Sulfanilamide	ng/L	100	101	101	101	0.66	19.8	
Thiabendazole	ng/L	100	24.2	19.9	29.2	0.19	0.70	
Triclosan	ng/L	100	17.5	15.8	19.4	0.13	0.76	
Trimethoprim	ng/L	100	344	228	446	2.92	9.79	
Tylosin	ng/L	100	6.50	4.41	9.39	0.06	0.20	
Warfarin	ng/L	100	3.97	1.78	5.47	0.04	0.16	

Table notes next page.

Notes:

¹ As determined by Hayco (2005); n/a=not applicable; ND=not detected; --- parameter does not lend itself to calculating loading, e.g., pH.

a=BC Approved Water Quality Guideline; b=BC Working Water Quality Guideline; c=CCME Water Quality Guideline for the protection of Aquatic Life; d=Health Canada Guidelines for Recreational Water Quality.

*Concentrations are incorporated into compliance monitoring mean values presented in Table 3.2 and Table 3.3. Aloadings for NH₃ and TSS were calculated using available daily/weekly data rather than quarterly data only, in order to increase accuracy.

Shaded cells indicate an exceedance of one or more WQG. Note that this table does not include the results of the compliance and treatment plant performance monitoring, as discussed in Section 3.3.1 and presented in Table 3.2.

Table 3.5 **2022 Acute Toxicity Results**

Wastewater Concentration	Raiı (O	nbow trout Inchorhynd	LC50 96-h chus mykis	nour ss)	Daphnia magna LC50 48-hour						
0//.		mortality	# (96-hr)		mortality # (48-hr)						
7oV/V	Jan	Apr	Aug	Oct	Jan	Apr	Aug	Oct			
0	0	0	0	0	0	0	0	0			
6.25	0	0	0	0	0	0	0	0			
12.5	0	0	0	0	0	0	0	0			
25	0	0	0	0	0	0	0	0			
50	0	0	0	0	0	0	0	0			
100	0	0	0	0	0	0	0	0			

Table 3.6 **2022 Chronic Toxicity Results**

	Endpoi	nt (%v/v)
Test	EC50 or	EC25 or
	LC50	LC25
Rainbow trout (Onchorhynchus mykiss) embryo/alevin test		
embryo survival	>100	>100
embryo viability	>100	>100
7-day Topsmelt (Atherinops affinis) survival and growth test		
survival	>100	
growth	>100	>100
6-day Ceriodaphnia test		
survival	>100	
reproduction	>100	>100
Echinoid fertilization (Strongylocentrotus purpuratus)	>100	>100

Notes:

EC50 = Concentration that causes an observable effect in 50% of the test organisms. EC25 = Concentration that causes an observable effect in 25% of the test organisms.

LC25 = Lethal Concentration to 25% of organisms in the test duration. LC50 = Lethal Concentration to 50% of organisms in the test duration.

v/v = volume per volume -- Not tested

4.0 BIOSOLIDS MONITORING

4.1 Introduction

In the SPTP LWMP, the CRD and its partner municipalities on the Saanich Peninsula made a commitment to implement a biosolids management plan, based on the following specific commitments:

- Pursue an effective and diversified program for the beneficial use of Class A biosolids that incorporates an economically viable and long-term solution.
- Mitigate nuisances associated with the production and application of biosolids, including odour, noise, truck traffic and dust.
- Manage biosolids to ensure that detrimental effects to public health and the environment are avoided.

The SPTP can produce Class A biosolids, in accordance with the pathogen reduction and vector attraction reduction processes in the ENV (BC MoE, 2002) *Organic Matter Recycling Regulations* (BC OMRR). These regulations define process and quality criteria for biosolids production and establish land application and distribution requirements. The regulations are set to protect human and environmental health.

In 2008, the CRD developed the PenGrow program to produce a soil enhancer product from the Class A biosolids. Biosolids were an end product of the sewage treatment process and were produced when solids (i.e., sludge) were treated. The product was cured and stored at the CRD's Hartland Landfill and the PenGrow program was intermittently in production until early 2011.

In July 2011, the PenGrow program was put on hold following CRD Board motions that "[ended] the production, storage and distribution of biosolids for land application at all CRD facilities and parks", including Hartland Landfill, and indicated the region "does not support the application of biosolids on farmland in the CRD under any circumstances." These restrictions were subsequently relaxed slightly to allow for non-agricultural land application in the short term. CRD staff are currently investigating a number of longer-term beneficial use options for the biosolids and sludge. Until markets for the biosolids can be developed and implemented, all sludge will be disposed of as controlled waste at the Hartland Landfill. The SPTP generated 3,837 tonnes of dewatered sludge in 2022.

Starting in 2013, the CRD commenced monitoring the sludge to help inform the RSCP on the partitioning behaviour of some wastewater contaminants between the solid and liquid phases of the treatment processes. Metals were of primary interest, as they fall under the RSCP's regulatory regime.

4.2 Methods

Sludge was produced at the SPTP and analyzed for similar parameters as previous years (Table 4.1). Sludge was collected monthly, with replicate samples collected in February and September.

4.3 Results and Discussion

In 2022, 40 parameters were monitored in the SPTP sludge. For those parameters that are BC OMRR regulated, all results were far below the Class A biosolids limit (Table 4.1), similar to previous years.

4.4 Overall Assessment

No biosolids were produced at the SPTP in 2022. It is unknown if or when production will recommence. However, the sludge monitoring data collected to inform the CRD's RSCP showed that all OMRR regulated parameters continue to be far below Class A biosolids limits. The sludge will continue to be disposed of as controlled waste at the Hartland Landfill until their long-term use is determined.

Table 4.1SPTP Sludge Monitoring, 2022

Parameter	Units	Class A Biosolids Limit (mg/kg)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
Regulated Parame	ters														
Arsenic	mg/kg dry	75	0.46	0.7	0.96	0.93	1.23		0.86	1.08	0.78	0.95	0.85	0.68	0.9
Cadmium	mg/kg dry	20	0.306	0.618	0.616	0.599	0.731		0.614	0.733	0.737	0.788	0.555	0.775	0.6
Chromium	mg/kg dry	1,060	4.5	5.5	8.1	6.92	8.89		7.59	8.37	7.17	6.28	5.67	4.52	6.7
Cobalt	mg/kg dry	151	0.71	0.79	1.19	1.07	1.11		0.94	1.28	1.03	1.05	1.0	0.84	1.0
Copper	mg/kg dry	757	110	143	190	180	178		225	265	320	350	254	167	217
Lead	mg/kg dry	505	3.49	5.57	13.5	7.29	8.03		8.85	8.5	8.24	9.28	8.27	5.96	7.9
Mercury	mg/kg dry	5	0.156	0.194	0.288	0.216	0.307		0.299	0.246	0.287	0.401	0.265	0.232	0.3
Molybdenum	mg/kg dry	20	2.32	2.77	3.56	3.35	3.07		3.12	3.31	3.79	4.18	2.94	2.68	3.2
Nickel	mg/kg dry	181	4.2	5.14	7.08	6.37	6.58		6	7.34	7.81	6.13	4.79	4.15	6.0
Selenium	mg/kg dry	14	1.16	1.5	1.75	1.88	1.88		1.95	1.88	1.95	2.13	1.88	1.57	1.8
Thallium	mg/kg dry	5	<0.1	<0.1	<0.1	<0.05	<0.05		< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	0.03
Vanadium	mg/kg dry	656	2.1	2.8	4	4.7	4		2.6	3.8	2.5	2.3	4	2.8	3.2
Zinc	mg/kg dry	1,868	147	176	226	266	304		358	387	400	397	308	248	292
Unregulated Parar	neters														
Aluminum	mg/kg dry	n/a	1,280	1,080	1,900	1,810	1,320		1,090	1,330	932	955	1,400	1,070	1,288
Antimony	mg/kg dry	n/a	0.36	0.54	0.71	0.66	0.75		0.71	1.46	0.94	0.99	0.6	0.57	0.8
Barium	mg/kg dry	n/a	20.9	33.1	47.3	50.1	45.5		33.1	83.3	45.8	50.9	41.4	30.9	43.8
Beryllium	mg/kg dry	n/a	<0.1	<0.1	<0.1	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
Bismuth	mg/kg dry	n/a	6.37	10.7	14.8	14.8	14.9		14.9	14	15	16.8	13.7	13.3	13.6
Boron	mg/kg dry	n/a	11.7	21.9	27.2	15.8	9.7		9.6	14	18.8	38.5	14.2	7.3	17.2
Calcium	mg/kg dry	n/a	3,830	5,140	5,940	5,790	5,710		6,080	5,700	4,750	4,950	5,390	4,830	5,283
Iron	mg/kg dry	n/a	1,920	1,830	2,750	2,640	3,500		2,090	2,720	2,030	2,120	2,470	1,940	2,365
Lithium	mg/kg dry	n/a	0.7	0.52	0.98	0.88	0.61		0.52	1.06	<0.50	<0.50	0.63	<0.50	0.6
Magnesium	mg/kg dry	n/a	2,530	3,120	3,930	4,070	3,980		2,590	2,330	2,180	3,370	2,410	2,000	2,955
Manganese	mg/kg dry	n/a	43.3	46.2	65.4	49.1	50.9		42.5	44.9	35.8	38.7	40.9	36.7	44.9
Moisture	%	n/a	78.7	76.6	76	78	75		75	73	75	77	73	71	75.3
Potassium	mg/kg dry	n/a	3,120	3,440	4,770	5,050	4,760		3,700	2,760	2,830	4,220	2,920	2,750	3,665
Silver	mg/kg dry	n/a	0.69	0.71	0.92	0.891	1.06		1.04	0.991	1.11	1.39	0.87	0.894	1.0
Sodium	mg/kg dry	n/a	254	303	434	371	371		392	427	415	439	346	397	377
Strontium	mg/kg dry	n/a	14.3	18.2	20.8	19.8	17		19.7	21.4	17.1	19.8	17.7	16.5	18.4
Tin	mg/kg dry	n/a	5.23	7.15	8.86	9.74	9.45		8.72	9.69	9.52	10.4	8.62	8.25	8.7

Table 4.1, continued

Parameter	Units	Class A Biosolids Limit (mg/kg)	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
Titanium	mg/kg dry	n/a	5.5	23.2	41.9	33.8	24.7		19.8	16.5	20.1	16.3	21.2	16.8	21.8
Total Solids	%	n/a	21.3	21	24.7	22.4	25.5		25.3	26.8	25.5	22.6	26.9	29.5	24.7
Tungsten	mg/kg dry	n/a	0.21	0.29	0.41	0.25	0.55		0.25	0.25	0.25	0.25	0.25	0.25	0.3
Uranium	mg/kg dry	n/a	0.261	0.302	0.4	0.473	0.388		0.285	0.371	0.222	0.222	0.34	0.288	0.3
WAD Cyanide	mg/kg dry	n/a	2.35	2.14	2.05		0.071		0.19	0.067	0.047	0.32	0.097	0.067	0.7
Zirconium	mg/kg dry	n/a	1.0	2.0	3.1	2.02	1.79		1.01	1.53	0.57	4.5	2.21	3.07	2.1

Notes:

*From Organic Matter Recycling Regulation (B.C. Reg. 18/2002, Schedule 4 Section 3, February 28, 2019), which references Trade Memorandum T-4-93 'Safety Guidelines for Fertilizers and Supplements' (Sept 1997) and contains maximum acceptable metal concentrations based on annual application rates (mg metal/kg product) 4,400 kg/ha – yr. FR1 and FR2 indicate two samples (field replicates) collected that month as part of QA/QC protocols.

--- Indicates data not available / sample not collected.

5.0 RECEIVING ENVIRONMENT MONITORING

Receiving environment monitoring is undertaken to assess human health and environmental impacts of the SPTP outfall. In addition, the results are used to verify the environmental concentrations of parameters that are predicted using wastewater concentration data and the 1:153 minimum initial dilution factor determined during the 2004 dye study (Hayco, 2005) (discussed in Section 3.0).

5.1 Introduction

The CRD conducts receiving environment monitoring adjacent to the SPTP wastewater discharge to assess the potential for human health risk for those participating in recreational activities (e.g., swimmers, kayakers) at the surface near the outfall (see Appendix C1 for site coordinates). In addition, monitoring data are used to assess potential risks to shellfish harvesting in the vicinity of the SPTP outfall, although there is no commitment in the LWMP to meet this standard outside of shellfish growing areas. Finally, surface waters are monitored to ensure that the outfall diffuser is functioning as expected and a minimum initial dilution of 153:1 is being achieved.

A review of the SPTP WMEP was conducted in 2011/2012, in partnership with ENV, including the surface water component. As a result of the review, the surface water sampling program was revised. Beginning in 2013, the fecal coliform sampling was switched from monthly to twice yearly, 5-in-30 sampling (Table 2.1) in order to align more closely with the ENV fecal coliform guideline, based on the geometric mean of 5 samples collected in 30 days not exceeding 200 CFU/100 mL. In addition, enterococci were analysed along with fecal coliforms, as they are a more persistent tracer of human waste in the marine environment, and have a more direct correlation with adverse human health impacts. Metal and conventional parameter concentrations were also added as extended analyses to the surface water monitoring program (Appendix C2) to confirm environmental concentrations that were previously only predicted by using wastewater data (Section 3.0) and applied minimum initial dilution factors.

5.2 Methods

The CRD sampling technicians sampled surface waters and the water column over two sampling periods ("winter", i.e., January/February 2022 and "summer", i.e., June/July 2022) using a 5 m research vessel positioned by global positioning system.

Each sampling period consisted of five individual sampling days occurring over a 30-day period ("5-in-30"). Nineteen stations at different distances from the outfall terminus were sampled. Sampling stations consisted of 14 outfall stations, one reference station located near Sidney Island, and four variable stations located at the edge of the IDZ (Figure 5.1). Station codes describe the distance from the outfall terminus in metres with compass direction (i.e., 100N = 100 m north of the outfall). The variable IDZ stations were selected at the time of sampling based on a computer model prediction (Lorax, 2021) of what depth and direction the effluent plume would most likely be trapped due to tides, current flow and direction. See Appendix C1 for a list of stations and coordinates.

Surface samples were collected at a depth of 1 m using a sampling pole. Sterile wide-mouth bottles were placed in the pole holder with the lid removed, submerged to collection depth, brought to the surface, and then excess water poured off before the lid was screwed on tightly.

IDZ samples and reference station samples were collected at three depths for each station: "top" (1 m below the surface), "middle" (calculated trapping depth from the computer model prediction), and "bottom" (1 m above the seafloor). An open, set, horizontal Niskin sampling bottle was deployed to the appropriate depth and closed using a weighted messenger. The bottle was then pulled back to the surface and decanted into the required sample containers. All samples were stored in coolers with ice until delivery to the analytical laboratory.

Surface water samples were analyzed by Bureau Veritas Laboratories Inc. (Burnaby, BC) for various parameters, depending on the sampling site and the sampling day. A larger list of parameters, including

metals, was analyzed on a single day of each five-day sampling series and results compared to applicable BC WQG. Metals analysis was conducted by ALS Environmental (Victoria, BC). See Appendix A for the list of surface water parameters and the analytical frequency for each.

Bacteriology results were averaged as geometric means and compared to the provincial and federal enterococci guidelines of 35 CFU/100 mL and to the single sample maximum of 70 CFU/100 mL (BCMoE&CCS, 2019, Health Canada, 2012). In addition, results were compared to Canadian Shellfish Sanitation Program (CSSP) guidelines for shellfish harvesting, which require that the geomean of fecal coliform results not exceed 14 CFU/100 mL and not more than 10% of the samples exceed 43 CFU/100 mL (CSSP, 2019).

IDZ samples were analysed for parameters that reflect the suite of nutrients in the SPTP Wastewater Monitoring Program. Both programs monitor ammonia, total Kjeldahl nitrogen (TKN), nitrate, nitrite, total phosphorus, conductivity, pH, salinity, and total organic carbon. While some parameters may not be relevant in the marine receiving environment (e.g., ammonia is measured in wastewater, but is primarily found in the ammonium form in marine waters), they are still monitored to allow for direct comparison of the two sets of results. This suite of nutrients has also been monitored since before the SPTP commenced discharging into Bazan Bay, as part of the pre-discharge monitoring program.

5.3 Results and Discussion

Bacteriology

Results show that all stations had very low concentrations of fecal coliforms and enterococci for both the summer and winter 5-in-30 sampling programs (Figure 5.2, Table 5.1, Table 5.2, Table 5.3 and Table 5.4). Figure 5.2 utilizes the maximum value detected for each sampling depth on each sampling event for the calculated geomeans. No single sample or geomean was over the respective human recreation or shellfish harvesting guidelines at the surface water (1 m depth) stations throughout the water column, with a maximum geomean of 2 CFU/100 mL recorded for fecal coliforms and 1 CFU/100mL for enterococci (Table 5.1 and Table 5.2). The IDZ stations had a maximum geomean of 2 CFU/100 mL for fecal coliform and 1 CFU/100 mL for enterococci (Table 5.3 and Table 5.4).

All surface water fecal coliform concentrations were well below the conservatively predicted environmental concentration of 5,948 CFU/100 mL, after the minimal initial dilution (1:153) (Hayco, 2005) was applied to the maximum effluent fecal coliform concentration of 910,000 CFU/100 mL (Table 3.4). Similar observations were made for enterococci, where surface water results were well below the 150 CFU/100 mL that was predicted using the maximum effluent enterococci concentration of 22,933 CFU/100 mL and the 153:1 dilution factor.

These results are generally consistent with previous years and previous studies (CRD, 2002-2020), including Island Health's summer beach sampling program that involves monitoring the nearshore environment in Bazan Bay, targeting beaches that are most commonly used for recreation.

Overall, the bacteriological sampling results, and previous dye study results (Hayco, 2005), indicate that the plume was predominantly trapped below the surface and that adverse health effects from recreational primary contact activities or the consumption of shellfish are not likely. There were no enterococci or fecal coliform geomean results or single sample results that exceeded the BC or Health Canada guidelines for the protection of human health, or the CSSP guidelines for shellfish harvesting. The values in Figure 5.2 use the maximum concentrations for each sampling day and depth to build a "worst case" scenario, e.g., a geomean of 3 CFU/100mL for summer middle depth fecal coliform.

As a conservative measure by the federal government, an area of approximately 17.65 km² around the outfall is closed for shellfish harvesting, as a standard Fisheries and Oceans Canada procedure near industrial and sanitary wastewater outfalls. Shellfish closures have a minimum radius around an outfall of 300 m, but closure areas are usually larger near bigger urban centres, such as for the SPTP outfall, where there are other potential sources of bacterial contamination (e.g., stormwater discharges, marinas, septic systems, sewage pumps), in addition to the wastewater outfall.

Metals

The extended suite of metals was analyzed at the four IDZ sites and a reference site on one day of sampling for each round of 5-in-30 sampling. Results are detailed in Appendix C2. For those parameters that were detected and had relevant BC and CCME WQG, only boron had WQG exceedances. Boron exceeded WQG at every station and every sampling event, including the reference station. This is a common occurrence, as the natural concentrations of boron are above WQG in the Salish Sea. ENV is working on updating the boron guideline.

Bottom (1m above bottom)

Notes:

1/1

Saanich Peninsula Waste Water Treatment Plant IDZ station geometric means of fecal coliform and enterococci counts 10/41CFU/100mL (maximum concentrations).

Each value is the geometric mean of each maximum value detected at each sampling event (i.e. n=5) Sampled 5 times in 30 days during each season. Geometric mean count shown in red if fecal count exceeds 200 CFU/100mL or enterococci count exceeds 20 CFU/100mL.

1/1

Coliform Enterococci

Fecal

Stat	ion	Winter Fecal coliforms (CFU/100mL)						Summer Fecal coliforms (CFU/100mL)					
		1	2	3	4	5	Geomean	1	2	3	4	5	Geomean
	Outfall	2	8	1	<1	<1	1	6	5	1	<1	1	2
	100N	1	<1	<1	<1	<1	1	2	1	<1	<1	<1	1
	100S	2	<1	<1	1	<1	1	2	1	<1	<1	<1	1
	200NE	<1	<1	<1	1	<1	1	<1	<1	3	<1	1	1
	200NW	<1	<1	<1	<1	<1	1	4	6	<1	<1	<1	1
	200SE	1	<1	<1	<1	<1	1	4	2	<1	<1	<1	1
Outfall Sites	200SW	1	2	<1	<1	1	1	<1	1	2	<1	2	1
Outian Siles	400E	2	<1	<1	<1	1	1	1	1	<1	<1	<1	1
	400N	3	<1	1	<1	1	1	<1	<1	1	<1	1	1
	400S	<1	<1	<1	<1	<1	1	<1	1	3	<1	<1	1
	400W	<1	<1	<1	<1	<1	1	3	4	<1	<1	<1	1
	800N	1	<1	1	<1	<1	1	1	<1	<1	<1	<1	1
	800S	1	<1	<1	<1	1	1	1	<1	<1	<1	1	1
	800W	<1	<1	<1	<1	1	1	1	<1	<1	<1	3	1
Reference Site	Reference 2	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1

Table 5.1 SPTP Surface Sites 5 Sampling Events in 30 Days Fecal Coliform 2022

Notes:

Shaded cells exceed BC Approved WQG = 200 CFU/100 mL (geometric mean over 5 samples). <1 replaced with 0.5 for Geomean calculation.

Sta	Station		Winter						Summer				
Jia		1	2	3	4	5	Geomean	1	2	3	4	5	Geomean
	Outfall	1	6	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	100N	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	100S	<1	<1	<1	<1	<1	1	<1	2	<1	<1	<1	1
	200NE	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	200NW	1	1	1	<1	<1	1	<1	<1	<1	<1	<1	1
	200SE	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	200SW	1	6	<1	<1	<1	1	<1	<1	<1	<1	<1	1
Outian Sites	400E	1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	400N	<1	<1	1	1	<1	1	<1	<1	<1	<1	<1	1
	400S	<1	<1	1	<1	<1	1	<1	<1	<1	<1	<1	1
	400W	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	800N	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	1	1
	800S	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	800W	1	<1	<1	<1	<1	1	<1	1	<1	<1	<1	1
Reference Site	Reference 2	<1	1	<1	1	<1	1	<1	<1	<1	<1	<1	1

Table 5.2 SPTP Surface Sites 5 Sampling Events in 30 Days Enterococci 2022

Notes:

Shaded cells exceed BC Approved WQG = 20 CFU/100 mL (geometric mean over 5 samples). <1 replaced with 0.5 for Geomean calculation.

Station		Winter Fecal coliforms (CFU/100mL)							Summer Fecal coliforms (CFU/100mL)					
		Day 1	Day 2	Day 3	Day 4	Day 5	Geomean	Day 1	Day 2	Day 3	Day 4	Day 5	Geomean	
	Тор	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1	
Reference	Middle	<1	<1	<1	<1	1	1	<1	<1	<1	<1	<1	1	
Bo	Bottom	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	2	1	
	Тор	<1	1	<1	<1	<1	1	1	<1	<1	<1	<1	1	
Station 1	Middle	1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1	
	Bottom	1	<1	1	<1	<1	1	<1	<1	2	<1	1	1	
	Тор	<1	3	<1	<1	<1	1	1	1	<1	<1	<1	1	
Station 2	Middle	20	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1	
	Bottom	2	1	1	<1	<1	1	1	<1	1	<1	<1	1	
	Тор	3	<1	<1	<1	<1	1	2	1	1	<1	3	1	
Station 3	Middle	3	<1	1	<1	<1	1	2	2	4	11	<1	2	
	Bottom	2	<1	<1	1	<1	1	2	<1	<1	<1	<1	1	
	Тор	<1	<1	<1	<1	1	1	<1	<1	<1	<1	1	1	
Station 4	Middle	<1	<1	<1	<1	<1	1	<1	4	<1	<1	<1	1	
	Bottom	1	<1	<1	<1	<1	1	1	2	<1	<1	1	1	

Table 5.3 SPTP IDZ Sites 5 Sampling Events in 30 Days Fecal Coliform 2022

Notes:

Shaded cells exceed BC Approved WQG = 200 CFU/100 mL (geometric mean over 5 samples).

<1 replaced with 0.5 for Geomean calculation.

--- Indicates incomplete sampling due to adverse weather conditions.

Station		Winter Enterococci (CFU/100mL)						Summer Enterococci (CFU/100mL)					
		Day 1	Day 2	Day 3	Day 4	Day 5	Geomean	Day 1	Day 2	Day 3	Day 4	Day 5	Geomean
	Тор	<1	1	<1	1	<1	1	<1	<1	<1	<1	<1	1
Reference	Middle	<1	1	<1	1	<1	1	<1	<1	<1	<1	<1	1
Botto	Bottom	1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	Тор	<1	<1	<1	1	<1	1	<1	<1	<1	<1	<1	1
Station 1	Middle	<1	<1	3	<1	<1	1	<1	<1	<1	<1	1	1
	Bottom	<1	<1	<1	<1	1	1	<1	<1	<1	<1	<1	1
	Тор	1	6	<1	<1	<1	1	<1	<1	<1	<1	<1	1
Station 2	Middle	4	4	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	Bottom	1	<1	1	1	<1	1	<1	<1	<1	<1	1	1
	Тор	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	1	1
Station 3	Middle	1	<1	1	<1	<1	1	<1	1	3	<1	<1	1
	Bottom	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
	Тор	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	1
Station 4	Middle	<1	<1	1	<1	<1	1	<1	1	<1	<1	<1	1
	Bottom	1	<1	1	<1	<1	1	1	1	<1	<1	<1	1

SPTP IDZ Sites 5 Sampling Events in 30 Days Enterococci 2022 Table 5.4

Notes:

Shaded cells exceed BC Approved WQG = 20 CFU/100 mL (geometric mean over 5 samples). <1 replaced with 0.5 for Geomean calculation.

--- Indicates incomplete sampling due to adverse weather conditions.

Nutrients

The potential effects of the SPTP discharge on nutrient concentrations in the marine receiving environment were assessed by qualitatively comparing the 2022 IDZ and reference station data. Data are presented in Appendix C3.

The 2022 mean concentrations of nutrients, and other measured parameters (i.e., ammonia, TKN, nitrite, nitrate, total phosphorus, dissolved phosphorus), exhibited no consistent (qualitative) differences between outfall and reference stations (Appendix C4). The average concentrations of nutrients in 2022 were also within the ranges measured during the pre- and post-discharge studies (Aquametrix Research Ltd., 2000 and 2001a), and were consistent with recent monitoring years and the concentrations expected in Juan de Fuca Strait. The average surface water result for nitrate was 0.32 mg/L N at the reference station and 0.29 mg/L N at the IDZ stations. For comparison, ambient nitrate concentrations in the Juan de Fuca Strait area are typically in the order of 0.140-0.420 mg/L N (Lewis, 1974 and 1978, as cited in Harrison *et al.*, 1994).

Figure 5.3 and Figure 5.4 present 2013-2022 total nitrogen and nitrate results from the reference area and outfall monitoring stations, compared to the Mackas and Harrison (1997) study of background concentrations in the area. The comparison indicates that the monitoring results are well within background concentrations.

Similar to previous years (CRD, 2002-2021), nutrient concentrations in 2022 exhibited high natural spatial and temporal variability, which is typical of the Strait of Georgia and the Juan de Fuca and Haro straits (Mackas and Harrison, 1997). Nutrient concentrations are expected to vary due to seasonal physiochemical and biological cycles in marine waters. From autumn through spring, surface-layer nitrogen concentrations are generally high in the Strait of Georgia and Juan de Fuca and Haro straits because of reduced stratification, sustained tidal and wind mixing and low phytoplankton productivity. In summer, nitrogen concentrations are much lower, coinciding with low salinity and high temperatures influenced by surface water from the Fraser River freshet (Mackas and Harrison, 1997). Ammonia values show a seasonal variation, with total nitrogen and nitrate (Figure 5.3 and Figure 5.4, Appendix C3) lower in the summer and higher in the winter and TKN and nitrite (Appendix C3) higher in the summer and lower in the winter.

Nutrient monitoring results from 2002-2022 have shown no indication of potential for anthropogenic eutrophication due to the outfall. Mackas and Harrison (1997) indicate that the potential for eutrophication of the Strait of Georgia and Juan de Fuca and Haro straits is low for two reasons: first, high ambient nitrate and ammonia concentrations make total primary productivity relatively insensitive to moderate changes; second, the exchange of water by currents is rapid, and water entering the Strait of Georgia and Juan de Fuca Strait carries naturally high nutrient concentrations. Natural nitrogen inputs into the straits from estuarine circulation are estimated to be an order of magnitude higher than all anthropogenic and atmospheric inputs combined (Mackas and Harrison, 1997). SPTP outfall loadings of nitrogen-based nutrients to Bazan Bay were approximately 636 tonnes N/year in 2022 (Table 3.4) (note that the 2022 value is an order of magnitude larger than previous years, due to an updated and corrected calculation method); whereas, the net natural nitrogen input to the Juan de Fuca Strait/Strait of Georgia/Puget Sound estuarine system totals approximately 400-600 tonnes N/day (i.e., 146,000-219,000 tonnes N/year) (Mackas and Harrison, 1997).

Finally, Bazan Bay naturally contains 15-46 tonnes of nitrate alone, if one uses the typical ambient nitrate concentrations in the Juan de Fuca Strait area (0.140-0.420 mg/L N; Lewis 1974, 1978, as cited in Harrison *et al.*, 1994) and an assumed volume of 110,105,000 m³ (volume calculated for the area enclosed by Sidney to James Island to Cordova Spit; Figure 5.1). Bazan Bay is also well flushed, as is evidenced by the fact that the 2022 surface water nitrate concentrations (Appendix C3) remained within the ambient Juan de Fuca nitrate concentrations. Overall, the 2022 surface water data showed no evidence of any significant effect of the SPTP discharge on nutrients in the Bazan Bay receiving environment.

The conditions that could trigger the re-evaluation of the need for a comprehensive nutrient monitoring program (Section 5.1) were not applied to the 2022 data, as none of the triggers were met. Regardless, the program review with ENV has led to a revised SPTP WMEP, including the surface water monitoring program, which began in 2013. The nutrient component will soon be reviewed by the TWQRP as the review of the need for disinfection has been completed, as per Trigger #4, Section 5.1.

Figure 5.3 SPTP Total Nitrogen Sampling Results 2013-2022

Figure 5.4 SPWTP Nitrate Sampling Results 2013-2022

5.4 Overall Assessment

Overall, the 2022 bacteriology results indicated that the outfall plume was predominantly trapped below the ocean surface. In addition, the potential for human exposure to high bacterial concentrations from the wastewater discharge was low around the outfalls, as demonstrated by geometric mean results that were below thresholds used to assess potential human health risks in surface waters. Effects on shellfish consumers were not expected. Most extended analysis monitoring parameters were either non-detect or below applicable WQG, except for boron, which exceeded WQG at every station and sampling event, including the reference station. The CRD will continue to monitor metals in waters around the outfall to assess environmental significance.

The 2022 nutrient results were consistent with previous years and there was no evidence of an effect on nutrient concentrations in the receiving environment from the SPTP discharge. There were no qualitative differences between the reference and IDZ stations, and results were within the ranges measured in previous years and ambient measurements throughout Juan de Fuca Strait and the Strait of Georgia.

6.0 SEAFLOOR MONITORING

The WMEP monitors the effects of the SPTP wastewater discharge on the seafloor at the end of the outfall once every four years. Seafloor sampling was last conducted in 2020 and will next be conducted in 2024. Results from the 2020 seafloor monitoring program are found in CRD (2021).

7.0 OVERALL CONCLUSIONS

Overall, the results of the WMEP monitoring conducted in 2022 did not indicate any significant negative effects from the SPTP discharge on the Bazan Bay receiving environment.

The CRD conducted wastewater monitoring on a regular basis to profile the chemical and physical constituents of influent and effluent. Influent and effluent quality was within expected ranges and met provincial and federal compliance requirements and treatment plant operational objectives. All priority substances, for which there are BC and Canadian WQG, met these guidelines after estimated minimum initial dilution of the effluent was factored in, except for bacteriological indicators. This indicates that the substances measured in the effluent were not likely at concentrations high enough to be of concern to aquatic life after discharge to the marine environment.

Effluent toxicity testing resulted in no acute toxicity, and no chronic impairment to survival and reproductive endpoints.

No biosolids were generated in 2022 but monitoring of dewatered sludge was undertaken to inform the CRD's RSCP. Monitoring results of the SPTP sludge showed that all BC OMRR regulated parameters were far below Class A biosolids limits.

Surface water monitoring was used to assess the human and environmental effects of the SPTP discharge and to confirm the minimum initial dilution factor of 1:153 determined during the 2004 dye study. Results from 2022 showed that most stations had very low concentrations of fecal coliforms and enterococci, even though environmental concentrations were predicted to be higher, based on effluent bacterial concentrations and the 1:153 dilution factor. Bacterial station geometric means were 3 or less CFU/100 mL for all stations and depths in 2022 indicating adverse health effects from recreational primary contact activities or shellfish consumption were not expected.

Boron exceeded WQG at all IDZ stations, as well as at the reference station, and is naturally found at high levels in Bazan Bay.

There was some seasonality (winter vs. summer sampling events) observed in nutrient concentrations in 2022, but these were consistent between the outfall IDZ stations and the reference station. As was observed in previous monitoring years, high temporal and spatial variation was evident in the data. Monitoring results were within the ranges measured in previous monitoring years and in ambient samples collected throughout

the Strait of Juan de Fuca and the Strait of Georgia. Overall, there was no evidence of nutrient enrichment in the receiving environment resulting from the SPTP discharge.

8.0 REFERENCES

APHA (American Public Health Association) (1992). Standard Methods for the Examination of Water and Wastewater. 21st Edition. APHA Press.

Aquametrix Research Ltd. (2000). Pre-Discharge Marine Assessment Program for the Saanich Peninsula Treatment Plant Wastewater Outfall. Prepared for the Capital Regional District, Scientific Programs, Victoria, BC.

Aquametrix Research Ltd. (2001a). Post-Discharge Marine Assessment Program for the Saanich Peninsula Treatment Plant Wastewater Outfall. Water Column Results – Final Report. Prepared for the Capital Regional District, Scientific Programs, Victoria, BC.

Aquametrix Research Ltd. (2001b). Post-Discharge Marine Assessment Program for the Saanich Peninsula Wastewater Outfall. Oceanography and the Physical Environment. Results. Prepared for the Capital Regional District.

Avocet Consulting (2007). Sediment Quality Guideline Reliability Analysis. Prepared for the Capital Regional District.

BC MOE (British Columbia Ministry of Environment) (2002). Environmental Management Act and Health Act, Organic Matter Recycling Regulation. Queens Printer, Victoria, BC.

BCMoE&CCS (2017) British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection & Sustainability Branch, British Columbia Ministry of Environment & Climate Change Strategy, Victoria, BC, Canada.

BCMoE&CCS (2019) British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Protection & Sustainability Branch, British Columbia Ministry of Environment & Climate Change Strategy, Victoria, BC, Canada.

BC MWLAP (British Columbia Ministry of Water, Land and Air Protection) (2003). British Columbia Field Sampling Manual For Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples. Prepared and published by Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Province of British Columbia.

CCME (2003) Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Tables 2002 update, In Canadian Environmental Quality Guidelines. Canadian Council for Ministers of the Environment, Winnipeg, MB, Canada.

CRD (2002). Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2000/2001 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2003). Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2002 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2004). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2003 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2005). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2004 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2006). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2005 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2007a). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2006 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2007b). CRD Macaulay and Clover Points Wastewater and Marine Environment Program – 2006 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2008). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2007 Annual Report. Prepared by the Capital Regional District, Marine Programs, Environmental Services department.

CRD (2009a) Saanich Peninsula Liquid Waste Management Plan, Consolidated Version. Originally published October 1996, Amended and Consolidated October 2009. Prepared by the Capital Regional District

CRD (2009b). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2008 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2010). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2009 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2011). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2010 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2012). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2011 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2013). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2012 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2014). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2013 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2015). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2014 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2016). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2015 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2017). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2016 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2018). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2017 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2020). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2018 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2020). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2019 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2021). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2020 Annual Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CRD (2022). CRD Saanich Peninsula Treatment Plant Wastewater and Marine Environment Program – 2021 Report. Prepared by the Capital Regional District, Environmental Services department, Victoria, BC, Canada.

CSSP (Canadian Shellfish Sanitation Program) (2019) Canadian Shellfish Sanitation Program – Manual of Operations. https://www.inspection.gc.ca/food/food-specific-requirements-and-guidance/fish/canadian-shellfish-sanitation-program/eng/1527251566006/1527251566942. Accessed online December 18, 2019.

Golder (2013) 2011 Trend Assessment for Substances in Macaulay Point and Clover Point Wastewater and the Saanich Peninsula Wastewater and Biosolids. Final Report prepared for the Capital Regional District Scientific Programs Division, Victoria, BC.

Golder (2017). Updated Guidance Manual for Assessment and Analysis of WMEP Data. Prepared for the Capital Regional District Scientific Programs Division, Victoria, BC.

Golder (2019) 2017 Trend Assessment for Substances in Macaulay Point and Clover Point Wastewater, Saanich Peninsula Wastewater and Biosolids, and Ganges Wastewater and Mixed Liquor. Draft Report prepared for the Capital Regional District Scientific Programs Division, Victoria, BC.

Harrison, P.J., Mackas, D.L., Frost, B.W., MacDonald, R.W. and Crecelius, E.A. (1994) An Assessment of Nutrients, Plankton and Some Pollutants in the Water Column of Juan de Fuca Strait, Strait of Georgia and Puget Sound and their Transboundary Transport. Proceedings of the BC/Washington Symposium on the marine Environments January 13 and 14, 1994.

Hayco (2005). Saanich Peninsula Wastewater Treatment Plant Outfall Diffuser Evaluation. Prepared for the Capital Regional District, Scientific Programs, Victoria, BC.

Health Canada (2012) Guidelines for Canadian Recreational Water Quality Third Edition. Published by authority of the Minister of Health. 161 pp.

Lewis, A. G. (1974). Monthly nutrient and chlorophyll values for Juan de Fuca Strait, June–December 1973. Institute of Oceanography Data Report 40, University of British Columbia, 17 pp.

Lewis, A. G. (1978). Concentrations of nutrients and chlorophyll on a cross-channel transect in Juan de Fuca Strait, British Columbia. Journal of the Fisheries Research Board of Canada. 35:305–314.

Lorax Environmental (2020). Wastewater Discharge and Dispersion Model. Prepared for Capital Regional District, Scientific Programs, Victoria, BC.

Mackas, D.L, and P.J. Harrison (1997). Nitrogenous Nutrient Sources and Sinks in the Juan de Fuca Strait/Strait of Georgia/Puget Sound Estuarine System: Assessing the Potential for Eutrophication. Estuarine, Coastal and Shelf Science. 44:1-21.

Pearson, T.H. and R. Rosenberg (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Reviews. 16: 229-311.

PSAMP (2002). Wastewater Discharge and Dispersion Model. Prepared for Capital Regional District, Scientific Programs, Victoria, BC.

US EPA (2002). Puget Sound Update 2002. Eighth Report of the Puget Sound Ambient Monitoring Program. Puget Sound Water Quality Action Team. Olympia, Washington, USA.

WDOE (1991) Sediment Quality Guidelines.

APPENDIX A

Parameter List for the Saanich Peninsula Wastewater and Marine Environment Program 2022

Appendix A Parameter List for the Saanich Peninsula Wastewater and Marine Environment Program 2022

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving En	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
CONVENTIONAL VARIABLES				
alkalinity	minimum twice per week to monthly	\checkmark		
biochemical oxygen demand	influent - weekly; effluent - 3 times/week	\checkmark		
carbonaceous biochemical oxygen demand	minimum 2 times/week	\checkmark		
chemical oxygen demand	weekly	\checkmark		
chloride	1 time/month	\checkmark		
conductivity	4-5 times/month	\checkmark		\checkmark
cyanide (strong acid dissociable)		\checkmark		
cyanide (weak acid dissociable)		\checkmark		
fecal coliform	weekly	\checkmark	\checkmark	
enterococci				
hardness (as CaCO ₃)		\checkmark		
hardness (as CaCO ₃), dissolved		\checkmark		
ammonia	2-3 times/month	\checkmark		
total Kjeldahl nitrogen	2-3 times/month	\checkmark	\checkmark	
nitrate	2-3 times/month	\checkmark		\checkmark
nitrite	2-3 times/month	\checkmark		
nitrogen, total		\checkmark		
oil & grease, mineral		\checkmark		
oil & grease, total		\checkmark		
organic carbon, total		\checkmark		
рН	daily	\checkmark		\checkmark
phosphate, dissolved	1 time/month		\checkmark	
phosphate, total	1 time/month		\checkmark	
salinity		√		ν
sulphate		\checkmark		
sulphide				
suspended solids, total	daily	√		ν
temperature				

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment			
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day		
METALS TOTAL		\checkmark				
aluminum		\checkmark				
antimony		\checkmark				
arsenic		\checkmark				
barium		\checkmark				
beryllium		\checkmark				
bismuth						
cadmium		\checkmark	\checkmark			
calcium		\checkmark				
chromium		\checkmark	\checkmark			
chromium VI		\checkmark				
cobalt		\checkmark				
copper		\checkmark	\checkmark			
iron		\checkmark				
lead		\checkmark				
magnesium		\checkmark	\checkmark			
manganese		\checkmark				
mercury		\checkmark	\checkmark			
molybdenum		\checkmark				
nickel		\checkmark	\checkmark			
phosphorus		\checkmark				
potassium		\checkmark	\checkmark			
selenium		\checkmark	\checkmark			
silver		\checkmark				
sodium						
thallium		√				
tin						
zinc		$\overline{\qquad}$				

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving En	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
METALS - OTHER				
dibutyItin		\checkmark		
dibutyltin dichloride		\checkmark		
monobutyltin		\checkmark		
monobutyltin trichloride		\checkmark		
tributyltin		\checkmark		
tributyltin chloride		\checkmark		
methyl mercury		\checkmark		
METALS DISSOLVED				
aluminum		\checkmark		
antimony		\checkmark		
arsenic		\checkmark		
barium		\checkmark		
beryllium		\checkmark		
cadmium		\checkmark		
calcium		\checkmark		
chromium		\checkmark		
cobalt		\checkmark		
copper		\checkmark		
iron		\checkmark		
lead		\checkmark		
magnesium		\checkmark		
manganese		\checkmark		
mercury		\checkmark		
molybdenum		\checkmark		
nickel		\checkmark		
phosphorus		\checkmark		
potassium		\checkmark		
selenium		√		
silver		\checkmark		
thallium				

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving En	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
tin		\checkmark		
zinc		\checkmark		
ALDEHYDES				
acrolein		\checkmark		
PHENOLIC COMPOUNDS				
total phenols		\checkmark		
2-chlorophenol		\checkmark		
2,4 & 2,5 -dichlorophenol		\checkmark		
2,4,6-trichlorophenol		\checkmark		
4-chloro-3-methylphenol		\checkmark		
pentachlorophenol		\checkmark		
2,4-dimethylphenol		\checkmark		
2,4-dinitrophenol		\checkmark		
2-methyl-4,6-dinitrophenol		\checkmark		
2-nitrophenol		\checkmark		
4-nitrophenol		\checkmark		
phenol		\checkmark		
2,4-DDD		\checkmark		
ORGANOCHLORINE PESTICIDES				
2,4-DDE		\checkmark		
2,4-DDT		\checkmark		
4,4-DDD		\checkmark		
4,4-DDE		\checkmark		
4,4-DDT		\checkmark		
aldrin		\checkmark		
alpha-chlordane		\checkmark		
alpha-endosulfan		\checkmark		
alpha-HCH		\checkmark		
beta-endosulfan				
beta-HCH				
chlordane				
delta-HCH				

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Er	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
dieldrin				
endosulfan sulphate		\checkmark		
endrin		\checkmark		
endrin aldehyde		\checkmark		
gamma-chlordane		\checkmark		
gamma-HCH		\checkmark		
heptachlor		\checkmark		
heptachlor epoxide		\checkmark		
methoxyclor		\checkmark		
mirex				
octachlorostyrene		\checkmark		
total endosulfan				
toxaphene		\checkmark		
POLYCYCLIC AROMATIC HYDROCARBONS				
2-chloronaphthalene				
2-methylnaphthalene				
acenaphthene		\checkmark		
acenaphthylene				
anthracene				
benzo(a)anthracene		\checkmark		
benzo(a)pyrene		\checkmark		
benzo(b)fluoranthene		\checkmark		
benzo(g,h,i)perylene		\checkmark		
benzo(k)fluoranthene		\checkmark		
chrysene		\checkmark		
dibenzo(a,h)anthracene				
fluoranthene		\checkmark		
fluorene		\checkmark		
indeno(1,2,3-c,d)pyrene				
naphthalene		\checkmark		
phenanthrene				

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving En	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
pyrene		\checkmark		
total high molecular weight – PAH		\checkmark		
total low molecular weight – PAH		\checkmark		
total PAH		\checkmark		
SEMIVOLATILE ORGANICS				
bis(2-ethylhexyl)phthalate		\checkmark		
butylbenzyl phthalate		\checkmark		
diethyl phthalate		\checkmark		
dimethyl phthalate		\checkmark		
di-n-butyl phthalate		\checkmark		
di-n-octyl phthalate		\checkmark		
MISCELLANEOUS SEMIVOLATILE				
ORGANICS				
1,2,4-trichlorobenzene		√		
1,2-diphenylhydrazine		√		
2,4-dinitrotoluene		√		
2,6-dinitrotoluene		√		
3,3-dichlorobenzidine		√		
4-bromophenyl phenyl ether		√		
4-chlorophenyl phenyl ether		√		
benzidine		√		
bis(2-chloroethoxy)methane		√		
bis(2-chloroethyl)ether		√		
bis(2-chloroisopropyl)ether		√		
hexachlorobenzene				
hexachlorobutadiene				
hexachlorocyclopentadiene				
hexachloroethane				
isophorone		\checkmark		
nitrobenzene		\checkmark		
N-nitrosodimethylamine		\checkmark		

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving En	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
N-nitrosodi-n-propylamine				
N-nitrosodiphenylamine		\checkmark		
VOLATILE ORGANICS				
Monocyclic Aromatic Hydrocarbons				
1,2-dichlorobenzene		√		
1,3-dichlorobenzene		√		
1,4-dichlorobenzene		√		
1,2-dibromoethane		√		
1,4-dioxane		√		
4,6-dinitro-2-methylphenol				
benzene		\checkmark		
carbon tetrachloride		\checkmark		
chlorobenzene				
dichlorodifluoromethane		\checkmark		
ethylbenzene		\checkmark		
styrene		\checkmark		
toluene		\checkmark		
m & p xylenes		\checkmark		
o-xylene				
xylenes		\checkmark		
Aliphatic				
acrylonitrile		√		
methyl tertiary butyl ether				
Chlorinated Aliphatic				
1,1,1,2-tetrachloroethane		√		
1,1,1-trichloroethane		√		
1,1,2,2-tetrachloroethane		√		
1,1,2-trichloroethane		√		
1,1-dichloroethane		√		
1,1-dichloroethene				
1,2-dichloroethane		√		
1,2-dichloropropane				

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving En	vironment
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day
2-chloroethylvinyl ether		\checkmark		
bromomethane		\checkmark		
chloroethane		\checkmark		
chloroethene		\checkmark		
chloromethane		\checkmark		
cis-1,2-dichloroethene		\checkmark		
cis-1,3-dichloropropene		\checkmark		
dibromoethane		\checkmark		
dibromomethane		√		
dichloromethane				
tetrabromomethane		√		
tetrachloroethene		√		
tetrachloromethane		\checkmark		
trans-1,2-dichloroethene		\checkmark		
trans-1,3-dichloropropene		\checkmark		
trichloroethene		\checkmark		
trichlorofluoromethane		\checkmark		
Trihalomethanes				
bromodichloromethane		\checkmark		
bromoform		\checkmark		
chlorodibromomethane		\checkmark		
tribromomethane		\checkmark		
trichloromethane		\checkmark		
vinyl Chloride		\checkmark		
Ketones				
4-methyl-2 pentanone				
dimethyl ketone				
endrin ketone				
methyl ethyl ketone		\checkmark		

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment				
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day			
TERPENES							
alpha-terpineol							
ΤΟΧΙΟΙΤΥ							
acute toxicity	quarterly	$\overline{\mathbf{v}}$					
chronic toxicity	annually	\checkmark					
HIGH RESOLUTION ANALYSES							
Nonylphenols							
4-Nonylphenols		√					
4-Nonylphenol monoethoxylates		√					
4-Nonylphenol diethoxylates		√					
Octylphenol							
PAHs							
Naphthalene		√					
Acenaphthylene		√					
Acenaphthene							
Fluorene							
Phenanthrene		\checkmark					
Anthracene		\checkmark					
Fluoranthene		\checkmark					
Pyrene		\checkmark					
Benz[a]anthracene		\checkmark					
Chrysene		\checkmark					
Benzo[b]fluoranthene		\checkmark					
Benzo[j,k]fluoranthenes		\checkmark					
Benzo[e]pyrene		\checkmark					
Benzo[a]pyrene		\checkmark					
Perylene		\checkmark					
Dibenz[a,h]anthracene		\checkmark					
Indeno[1,2,3-cd]pyrene		\checkmark					
Benzo[ghi]perylene		\checkmark					

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment				
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day			
2-Methylnaphthalene							
2,6-Dimethylnaphthalene		\checkmark					
2,3,5-Trimethylnaphthalene		\checkmark					
1-Methylphenanthrene		\checkmark					
Dibenzothiophene		\checkmark					
PBDEs		\checkmark					
PCBs		\checkmark					
Pesticides		,					
1,3-Dichlorobenzene		√					
1,4-Dichlorobenzene							
1,2-Dichlorobenzene							
1,3,5-Trichlorobenzene		\checkmark					
1,2,4-Trichlorobenzene							
1,2,3-Trichlorobenzene		\checkmark					
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		\checkmark					
1,2,3,4-Tetrachlorobenzene		\checkmark					
Pentachlorobenzene		\checkmark					
Hexachlorobutadiene		\checkmark					
Hexachlorobenzene		\checkmark					
HCH, alpha		\checkmark					
HCH, beta		\checkmark					
HCH, gamma		\checkmark					
Heptachlor		\checkmark					
Aldrin		\checkmark					
Octachlorostyrene		\checkmark					
Chlordane, oxy-		\checkmark					
Chlordane, gamma (trans)		\checkmark					
Chlordane, alpha (cis)		\checkmark					
Nonachlor, trans-							

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment				
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day			
Nonachlor, cis-							
2,4'-DDD							
4,4'-DDD							
2,4'-DDE							
4,4'-DDE							
2,4'-DDT							
4,4'-DDT							
Mirex		\checkmark					
HCH, delta		\checkmark					
Heptachlor Epoxide		\checkmark					
alpha-Endosulphan		\checkmark					
Dieldrin		\checkmark					
Endrin		\checkmark					
beta-Endosulphan		\checkmark					
Endosulphan Sulphate							
Endrin Aldehyde							
Endrin Ketone		\checkmark					
Methoxychlor		\checkmark					
PFOS							
Perfluoroheptanoic Acid (PFHpA)							
Perfluorohexanoic Acid (PFHxA)							
Perfluorononanoic Acid (PFNA)							
Perfluorooctane Sulfonamide (PFOSA)							
Perfluorooctanesulfonic acid							
Perfluorooctanoic acid (PFOA)							
Perfluoropentanoic Acid (PFPeA)		\checkmark					
PFBS		\checkmark					
PFDoA							
PFHxS		\checkmark					

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment				
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day			
PFUnA		\checkmark					
PCDD							
1,2,3,4,6,7,8-HPCDD							
1,2,3,4,6,7,8-HPCDF							
1,2,3,4,7,8,9-HPCDF							
1,2,3,4,7,8-HXCDD							
1,2,3,4,7,8-HXCDF		\checkmark					
1,2,3,6,7,8-HXCDD		\checkmark					
1,2,3,6,7,8-HXCDF		\checkmark					
1,2,3,7,8,9-HXCDD		\checkmark					
1,2,3,7,8,9-HXCDF		\checkmark					
1,2,3,7,8-PECDD		\checkmark					
1,2,3,7,8-PECDF		\checkmark					
2,3,4,6,7,8-HXCDF		\checkmark					
2,3,4,7,8-PECDF		\checkmark					
2,3,7,8-TCDD		\checkmark					
2,3,7,8-TCDF		\checkmark					
OCDD		\checkmark					
OCDF		\checkmark					
TOTAL HEPTA-DIOXINS		\checkmark					
TOTAL HEPTA-FURANS		\checkmark					
TOTAL HEXA-DIOXINS		\checkmark					
TOTAL HEXA-FURANS		\checkmark					
TOTAL PENTA-DIOXINS		\checkmark					
TOTAL PENTA-FURANS		\checkmark					
TOTAL TETRA-DIOXINS							
TOTAL TETRA-FURANS							
PPCPs							
2-Hydroxy-Ibuprofen							

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment				
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day			
Acetaminophen		\checkmark					
Azithromycin		\checkmark					
Bisphenol A		\checkmark					
Caffeine		\checkmark					
Carbadox		\checkmark					
Carbamazepine		\checkmark					
Cefotaxime		\checkmark					
Ciprofloxacin		\checkmark					
Clarithromycin		\checkmark					
Clinafloxacin		\checkmark					
Cloxacillin		\checkmark					
Dehydronifedipine		\checkmark					
Digoxigenin		\checkmark					
Digoxin		\checkmark					
Diltiazem		\checkmark					
Diphenhydramine		\checkmark					
Enrofloxacin		\checkmark					
Erythromycin-H2O		\checkmark					
Flumequine		\checkmark					
Fluoxetine		\checkmark					
Furosemide							
Gemfibrozil		\checkmark					
Glipizide		\checkmark					
Glyburide		\checkmark					
Hydrochlorothiazide							
Ibuprofen							
Lincomycin							
Lomefloxacin							
Miconazole							

	Compliance Monitoring and Treatment Plant Performance	Wastewater Priority Substances	Receiving Environment				
Parameter	Influent and Effluent - Sampling Frequency	Sampled Quarterly	5 Samples in 30 Days (summer and winter) 1st day	5 Samples in 30 Days (summer and winter) 2nd-5th day			
Naproxen		\checkmark					
Norfloxacin		\checkmark					
Norgestimate		\checkmark					
Ofloxacin		\checkmark					
Ormetoprim		\checkmark					
Oxacillin		\checkmark					
Oxolinic Acid		\checkmark					
Penicillin G		\checkmark					
Penicillin V		\checkmark					
Roxithromycin		\checkmark					
Sarafloxacin		\checkmark					
Sulfachloropyridazine		\checkmark					
Sulfadiazine		\checkmark					
Sulfadimethoxine		\checkmark					
Sulfamerazine		\checkmark					
Sulfamethazine		\checkmark					
Sulfamethizole		\checkmark					
Sulfamethoxazole		\checkmark					
Sulfanilamide		\checkmark					
Sulfathiazole		\checkmark					
Thiabendazole		\checkmark					
Triclocarban		\checkmark					
Triclosan		\checkmark					
Trimethoprim		\checkmark					
Tylosin		\checkmark					
Virginiamycin							
Warfarin							
PFAS		\sim					

APPENDIX B

Wastewater Monitoring

- Appendix B1 Saanich Peninsula Treatment Plant Effluent Flow (m³) in 2022
- Appendix B2 Compliance and Treatment Plant Performance Influent Results 2022
- Appendix B3 Compliance and Treatment Plant Performance Effluent Results 2022
- Appendix B4 Influent and Effluent Priority Substance Concentrations 2022

Appendix B1 Saanich Peninsula Treatment Plant Effluent Flow (m³) in 2022

Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	9,716	9,772	15,084	10,273	10,186	8,882	8,456	8,804	8,658	8,309	9,111	9,347
2	13,808	9,698	13,227	9,254	9,998	8,750	8,283	8,621	8,873	8,595	6,357	9,052
3	17,158	10,168	11,744	10,513	9,617	8,904	10,588	8,565	8,592	8,590	11,319	10,328
4	14,955	9,807	10,783	18,600	9,617	8,835	9,778	8,537	8,459	8,520	12,431	9,622
5	12,927	9,494	10,148	13,485	10,301	9,247	9,106	8,489	9,138	8,588	9,770	9,139
6	14,872	9,569	9,975	11,512	9,910	8,985	8,882	8,176	8,593	8,558	10,810	9,240
7	23,177	9,518	9,832	10,655	9,498	8,843	9,219	8,431	8,557	8,535	9,839	9,357
8	15,947	9,278	9,389	10,333	9,519	8,799	8,909	8,657	8,475	8,414	9,596	9,682
9	14,723	9,219	9,126	9,964	9,516	11,207	8,727	8,509	8,279	8,359	9,116	9,400
10	14,564	9,095	9,295	13,491	9,165	10,385	8,817	8,557	8,030	8,766	8,894	9,748
11	20,389	9,154	9,221	12,245	9,037	9,323	9,039	8,494	8,366	8,437	8,633	9,345
12	22,868	8,900	9,264	11,598	9,181	9,367	8,883	8,513	8,502	8,601	8,443	9,063
13	16,789	9,181	8,935	10,797	8,969	9,370	8,738	8,228	8,354	8,406	8,423	8,723
14	13,834	9,018	11,279	10,257	9,121	8,900	8,827	8,419	8,405	8,362	8,579	8,612
15	12,329	8,686	11,760	9,969	10,653	9,013	8,779	8,723	8,476	8,187	8,356	8,592
16	11,803	9,009	10,513	9,568	10,144	9,112	8,382	8,493	8,450	8,449	8,135	8,416
17	11,569	8,620	13,416	9,451	9,417	9,038	8,615	8,439	8,277	8,447	8,224	8,313
18	12,233	8,592	12,316	9,792	9,694	8,666	8,922	8,567	8,303	7,241	8,046	8,359
19	11,852	8,455	11,139	9,441	9,402	8,865	8,760	8,629	8,696	8,545	8,004	8,373
20	13,170	8,472	10,526	9,543	9,128	9,061	8,720	8,306	8,430	8,544	8,282	7,991
21	11,630	9,210	12,330	9,621	8,790	8,991	8,639	8,555	8,370	8,275	8,324	8,252
22	10,968	8,679	12,873	9,331	8,576	8,935	8,628	8,856	8,477	8,215	9,972	8,361
23	10,773	8,482	13,190	9,114	9,153	8,794	8,347	8,742	8,353	8,543	8,789	8,610
24	10,487	8,744	12,278	9,387	8,972	8,642	8,436	9,224	8,247	8,989	8,501	19,202
25	10,027	8,600	10,248	9,961	8,930	8,428	8,774	8,622	8,538	8,683	8,977	21,407
26	9,667	9,031	10,465	9,426	9,263	8,650	8,730	8,643	8,432	8,487	8,740	24,959
27	9,415	11,964	10,194	9,321	9,424	8,970	8,617	8,402	8,510	9,616	8,991	25,364
28	9,407	20,611	10,665	9,176	8,719	8,780	8,739	8,543	8,359	9,350	8,567	17,810
29	9,494		10,064	9,035	9,031	8,659	8,726	8,841	8,331	8,568	9,456	13,835
30	10,852		9,825	11,077	8,912	8,729	8,290	8,718	8,619	10,760	10,974	17,046
31	10,243		8,807		8,847		8,257	8,630		10,924		13,546
TOTAL Flow (m3/day)	411,646	269,026	337,911	316,190	290,690	271,130	272,613	265,933	254,149	268,863	271,659	359,094
Average	13,279	9,608	10,900	10,540	9,377	9,038	8,794	8,578	8,472	8,673	9,055	11,584
Maximum	23,177	20,611	15,084	18,600	10,653	11,207	10,588	9,224	9,138	10,924	12,431	25,364
Minimum	9,407	8,455	8,807	9,035	8,576	8,428	8,257	8,176	8,030	7,241	6,357	7,991
n	31	28	31	30	31	30	31	31	30	31	30	31
											Annual Average	9,833

Appendix B2 Compliance and Treatment Plant Performance Influent Results 2022

Date 2022	ALK	BOD	CBOD	CL	COD	FC	NH ₃	Unionized NH ₃	NO ₂	NO ₃	TKN	PO ₄	рН	pH@15	TSS
units	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100 mL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
4-Jan							22		< 0.005	< 0.02	26	3.6	7.3		
6-Jan		182			427										
13-Jan		63			222										
18-Jan						1,600,000	28.00		< 0.002			4.9	7.5		
18-Jan	178			75			25		< 0.005	0.14	35		7.4		
19-Jan		220	200	71	483	2,900,000	27	0.03	< 0.005	< 0.02	29	4.2	7.4	6.7	
20-Jan						11,000,000	27		< 0.002			5.0	7.5		
20-Jan		180			459										
26-Jan		205			501										
3-Feb		259			1,500										
8-Feb							32		<0.005	< 0.02	48	5.8	7.5		
10-Feb		197			2,120										
17-Feb		251			2,130										
22-Feb	205						36		<0.05	0.20	50		7.3		
24-Feb		268			2,140										
2-Mar		162			1,562										
8-Mar							34		< 0.005	< 0.02	43	5.4	7.4		
10-Mar		211			1,940										
17-Mar		197			2,176										
22-Mar	185			94			28		< 0.005	<0.02	34		7.4		
24-Mar		172			1,710										
31-Mar		261			1,530										
5-Apr							20		<0.05	<0.2	22	2.4	7.2		
6-Apr		190	190	78	11,000	12,000,000	26	0.03	<0.05	<0.2	34	3.7	7.6	6.6	
7-Apr		177			1,804										
13-Apr		219			1,552										
19-Apr	209			116			33		<0.05	<0.2	15		7.1		
21-Apr		241			1,800										
28-Apr		281			1,860										
3-May							32		<0.05	<0.2	41	5.5	7.4		
5-May		324			570										
12-May		265			1,990										
17-May	207						35		<0.05	<0.2	40		7.3		
19-May		230			1,840										
26-May		230			1,790										
2-Jun		200			1,430										
7-Jun							35		< 0.005	< 0.02	50	5.8	7.2		

Date 2022	ALK	BOD	CBOD	CL	COD	FC	NH ₃	Unionized NH ₃	NO ₂	NO ₃	TKN	PO ₄	рН	pH@15	TSS
units	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100 mL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
9-Jun		262			1,350										
16-Jun		198			1,480										
21-Jun	214						35		< 0.05	<0.2	48		7.4		
23-Jun		239			1,460										
29-Jun		245			1,604										
5-Jul							32		< 0.005	< 0.02	47	6.0	7.3		
6-Jul		242			804										
12-Jul						2,500,000	1		< 0.002			9.1	7.4		
13-Jul		270	250	120	865	3,200,000	2	0.00	2.76	11.30	41	6.6	7.8	6.4	
14-Jul						3,800,000	0		0.06			6.9	7.3		
14-Jul		245			564										
19-Jul	233						40		< 0.005	< 0.02	57		7.3		
21-Jul		257			866										
28-Jul		214			618										
4-Aug		253			854										
9-Aug							35		< 0.005	< 0.02	50	6.5	7.3		
11-Aug		269			1,330										
18-Aug		246			1,327										
23-Aug	221						38		< 0.005	< 0.02	44		7.3		
25-Aug		202			1,580										
31-Aug		282			1,722										
6-Sep							37		< 0.005	< 0.02	51	6.5	7.3		
8-Sep		274			591										
15-Sep		237			605										
20-Sep	221						37		< 0.005	< 0.02	48		7.4		
21-Sep		268			1,283										
29-Sep		375			1,710										
4-Oct							39		< 0.005	< 0.02	53	11.0	7.2		
6-Oct		276			1,450										
13-Oct		382			850										
18-Oct	237						45		< 0.005	< 0.02	65		7.4		
20-Oct		378			1,640										
27-Oct		240	250	120	706	47,000,000	43	0.07	< 0.005	< 0.02	58	6.4	7.7	6.8	
27-Oct		304			1,410										
3-Nov		245			806										
8-Nov							36		< 0.005	< 0.02	49	5.5	7.4		
10-Nov		227			1,108										
17-Nov		270			1,116										

Appendix DZ, conti	nueu														
Date 2022	ALK	BOD	CBOD	CL	COD	FC	NH ₃	Unionized NH ₃	NO ₂	NO ₃	TKN	PO ₄	рН	pH@15	TSS
units	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100 mL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
22-Nov	234						41		< 0.05	<0.02	53		7.2		
24-Nov		351			1,496										
30-Nov		253			540										
6-Dec							37		< 0.005	<0.02	56	5.9	7.3		
8-Dec		273			1,340										
13-Dec	224						39		42.30	<0.02	50		7.5		
15-Dec		282			1,300										
22-Dec		232			1,100										
29-Dec		143			616										
Mean	214	243	223	96	1,440	10,500,000	30	0.03	1.42	0.4	44	5.8	7.4	6.6	
Min	178	63	190	71	222	1,600,000	0	0.001	0.001	0.010	15	2.4	7.1	6.4	
Max	237	382	250	120	11,000	47,000,000	45	0.07	42	11.3	65	11.0	7.8	6.8	
n	12	56	4	7	56	8	32	4	32	28	28	20	32	4	

Notes: ALK-alkalinity, BOD-total biochemical oxygen demand, COD-chemical oxygen demand, CL-chloride, COND-conductivity, NH₃-ammonia, UNION NH₃-unionized ammonia NO₃-nitrate, NO₂-nitrite, TDP-total dissolved phosphorus, TP-total phosphorous, TKN-total Kjeldahl nitrogen, CBOD- carbonaceous biochemical oxygen demand, TRC-total residual chlorine, TSS-total suspended solids
Appendix B3 Compliance and Treatment Plant Performance Effluent Results 2022

Date 2022	ALK	BOD	CBOD	CL	COD	FC	NH ₃	Unionized NH ₃	NO ₂	NO ₃	TKN	PO ₄	рН	pH@15	TRC	TSS
units	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100 mL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
permitted max	9		45				5				<u> </u>		6-9			45
4-Jan			3			720	0.02	< 0.0005	0.06	13	1	1.0	7.1	6.9	0.41	10.0
5-Jan		9	3													
6-Jan		9.9	3.7		37											
12-Jan		6.0	5.9													
13-Jan		5.6	4.8		33											
18-Jan						14 000	0.10		0.04			07	72			
18-Jan	.34		2.5	75		27000	0.04	<0.0005	0.03	14	1		7.1	62	0.02	6.0
19-Jan		3.9	<2	77	40	9 500	0.04	<0.0000	0.03	13.9	<04	03	7.1	6.3		6.0
19-Jan		18.9	87													
20-Jan						9 900 000	0.04		0.05			0.9	7 1			
20 Jan		16.8	7.6		47											
25-lan		3.6	4.4													
26- Jan			3.0		/3											
20-5dil 2 Eab		0.2	3.0		43											
2-reb 2 Ech		9.5	3.0		1100											
3-Feb		11	4		1100	0.500			0.06	15.4	0.5		7.4		0.02	5.0
0-Feb		 5 7				9,300		<0.1	0.06	15.4	0.5	2.2	7.4	0.0	0.03	5.0
9-FeD		5.7	2													
10-Feb		0.2	2		200											
16-Feb		C.6	3													
17-Feb		12.1	5		1670											
22-Feb	45					390,000	4.38	<0.1	0.70	14.0	5.5		1.3	0.2	0.02	10.0
23-Feb		14.6	7.4													
24-Feb		12.9	6.1		1400											
1-Mar		6.6	3.8													
2-Mar		6.6	<2.1		1397											
8-Mar							<0.1	<0.1	0.05	15.4	1.2	2.4	7.0	6.7		8.0
9-Mar		8.2	3.2													
9-Mar						3,000										
10-Mar		13.9	3.2		1260											
16-Mar		9.1	2.9													
17-Mar		9.5	3.3		1558											
22-Mar	86			79		910,000	12.80	<0.1	0.73	10.7	12.8		7.3	6.9	0.01	14.0
23-Mar		11.5	4.8													
24-Mar		13.1	4.1		1480											
30-Mar		14.8	4.5													
31-Mar		16.2	3.7		1230											
5-Apr						38,000	5.67	<0.1	1.01	8.6	5.1	0.2	7.1	7.0		6.0
6-Apr		15.0	4.8	76	373	15,000	4.00	0	1.49	8.9	<2	0.2	7.7	6.8		4.0
6-Apr		11.5	3.1													
7-Apr		10.5	2.7		1544											
12-Apr		17.8	5.5													
13-Apr		19.1	6.4		904											
19-Apr	88			94		390,000	10.90	0.100	3.18	1.2	10.5		1.2	6.8	0.01	11.0
20-Apr		10.3	3													
21-Apr		12.9	3.2		1320											
27-Apr		20.4	4.7													
28-Apr		14.7	2.8		1440											
3-May						230,000	11.20	<0.1	0.76	10.3	9.5	2.1	7.2	6.8		13.0
4-May		13.3	3.9													
5-May		3.7	<2		1360											

Appendix B3, continu	hed															
Date 2022	ALK	BOD	CBOD	CL	COD	FC	NH ₃	Unionized NH ₃	NO ₂	NO ₃	TKN	PO₄	рН	pH@15	TRC	TSS
units	ma/L	ma/L	ma/L	ma/L	ma/L	CFU/100 mL	ma/L	ma/L	ma/L	ma/L	ma/L	ma/L	ma/L	ma/L	ma/L	ma/L
permitted max			45										6-9			45
11-May		13.7	43													
12-May		13.6	3.6		1430											
17-May	68					810 000	7 59	<0.1	653.00	12.0	77		7 1	6.9	0.02	21.0
17-May		37.0	9.5													
19-May		35.0	37.0		1160											
25-May		27.0	7.6													
26-May		34.0	11.0		72											
1- lun		20.0	2.7										<u>+</u>			
2- lun		20.0	2.1		1250											
Z-Jun		23.0	<2		4230	3 800	3.27		2.02	12.0	3.8	1.1	7 1	6.9		6.0
9 Jun		10.0	1.6			3,000	5.27	NO.1	2.02	12.5	5.0	4.4	1.1	0.9		0.0
0-Jun		19.0	4.0		5/9								+			
9-Juli 15 Jun		10.U E 9	4.0		540											
16 Jun		5.6	3.5		1050											
10-Juli		0.0	3.0		1050		4.70									
21-Jun	41					2,000	1.76	<0.1	1.13	13.2	2.5		1.2	6.9	0.02	4.0
22-Jun		8.1	3.1													
23-Jun		10.2	3.3		1010											
28-Jun		14.3	<2													
29-Jun		14.7	3.0		968											
5-Jul						410,000	5.54	<0.1	1.47	10.1	6.4	3.9	1.2	6.7	0.02	9.0
5-Jul		7.6	2.5													
6-Jul		12.6	4.6		58											
12-Jul						16,000	3.40		1.78			6.5	7.1			
13-Jul		17.0	5.8	140	53	100,000	0.29	<0.0005	2.84	11.4	2.7	5.2	7.2	6.4		1.6
13-Jul		20.5	3.7													
14-Jul						140,000	0.06		3.10			5.0	7.5			
14-Jul		11.9	3.2		1060											
19-Jul	68					45,000	6.68	<0.1	1.74	11.9	6.5		7.2	6.9	0.02	13.0
20-Jul		17.5	5.6		590											
21-Jul		14.4	5.0													
27-Jul		7.4	2.3													
28-Jul		8.4	1.7		360											
3-Aug		9.6	5.6													
4-Aug		10.7	3.9		568											
9-Aug						210,000	3.84	<0.1	0.81	11.4	4.3	5.9	7.2	6.9		12.0
10-Aug		13.4	3.5													
11-Aug		15.0	4.8		590											
17-Aug		13.8	2.9													
18-Aug		11.3	2.6		1150											
23-Aug	75		4.2			550,000	6.91	<0.1	0.65	9.8	6.7		7.4	7.0	0.02	6.0
24-Aug			2.6													
25-Aug		11.1	6.0		1310											
30-Aug		30.9	7.9													
31-Aua		22.0	5.0		812											
6-Sep						2 400	6.97	<0.1	0.65	10.7	67	5.8	7 1	6.8		9.0
7-Sep		22 4	<4													
8-Sen		25.9	~4		1082								+	<u>+</u>		
14-Sen			~4											<u>+</u>		
15-Sen		16.3	~4		50									+		
20-Sen	60					83.000	2 07	<i>-</i> ∩1	0.50	11 8	Δ7		7.0	67	0.02	80
20-00p		10.2	-1				5.31		0.00		.		1.0		0.02	0.0
zu-sep		10.2	<4													

Appendix B3, continue	ed															
Date 2022	ALK	BOD	CBOD	CL	COD	FC	NH ₃	Unionized NH ₃	NO ₂	NO ₃	TKN	PO ₄	рН	pH@15	TRC	TSS
units	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100 mL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
permitted max			45										6-9			45
21-Sep		14.8	4.9		815											
28-Sep		18.3	4.2													
29-Sep		14.7	4.3		1150											
4-Oct						4,100	3.90	<0.102	0.44	13.6	3.8	4.0	6.9	6.6	0.01	11.0
5-Oct		20.6	5.7													
6-Oct		18.3	5.3		788											
12-Oct		17.9	5.0													
13-Oct		15.1	4.8		88											
18-Oct	59					28,000	7.35	<0.102	1.96	9.1	9.2		7.4	7.1		13.0
19-Oct		19.2	4.7													
20-Oct		21.9	4.9		62											
26-Oct		23.1	5.2													
27-Oct		19.0	8.2	120	57	1,200	3.60	0.004	3.63	15.2	0.4	3.2	7.3	6.6		8.8
27-Oct		23.4	<4		304											
2-Nov		27.8	10.0													
3-Nov		33.6	4.7		642											
8-Nov						4,200	0.14	<0.1	1.77	14.7	2.1	5.3	7.0	6.4	0.07	18.0
9-Nov		20.3	7.0													
10-Nov		15.7	6.4		772											
16-Nov		13.7	6.1													
17-Nov		17.2	5.7		694											
22-Nov	24					7,100	0.12	<0.1	1.51	14.0	1.4		6.9	6.4	0.01	7.0
23-Nov		12.8	4.9													
24-Nov		11.9	4.4		1026											
29-Nov		20.1	6.5													
30-Nov		15.6	5.7		68											
6-Dec						12,000	<0.1	<0.1	0.55	14.7	3.3	3.1	7.1	6.7		12.0
7-Dec		17.3	5.8													
8-Dec		15.6	<4		602											
13-Dec	31					4,300	<0.1	<0.1	785	14.2	1.7		7.2	6.7	0.02	21.0
14-Dec		17.0	<4													
15-Dec		17.1	5.5		651											
21-Dec		15.4	3.4													
22-Dec		39.4	12.4		71											
28-Dec		12.0	<4													
29-Dec		11.0	<4		491											
Mean	56.6	15.2	4.6	94.4	803	449,057	3.7	0.042	46	12	338	3.1	7.2	6.7	0.0	9.8
Min	23.7	3.6	1.0	75.0	33	720	0.020	0.00025	0.032	7.2	0.2	0.2	6.9	6.2	0.010	1.6
Max	88	39	37	140	4,250	9,900,000	13	0.100	785	15	7,650	6	8	7	0.41	21
n	12	105	111	7	56	32	31	28	32	28	28	20	32	28	16	28

Notes: ALK-alkalinity, BOD-total biochemical oxygen demand, COD-chemical oxygen demand, CL-chloride, COND-conductivity, NH₃-ammonia, union NH₃-unionized ammonia, NO₃-nitrate, NO₂-nitrite, TDP-total dissolved phosphorus, TP-total phosphorus, TKN-total Kjeldahl nitrogen, CBOD- carbonaceous biochemical oxygen demand, UN NH₃-unionized ammonia, UN NH₃-unionized ammonia, NO₃-nitrate, NO₂-nitrite, TDP-total dissolved phosphorus, TP-total phosphorus, TKN-total Kjeldahl nitrogen, CBOD- carbonaceous biochemical oxygen demand, UN NH₃-unionized ammonia, TRC-total residual chlorine, TSS-total suspended solids. Shaded value indicates exceedance to permitted maximum.

Appendix B4 Influent and Effluent Priority Substance Concentrations 2022

			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 14	4 2022	Oct. 2	7 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
ralallietei			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
Enterococci	TOT	CFU/100 mL	660000	3800	1100	840	4600000	4700	440000	2800	280000	16000	1000000	50000	890000	860
Fecal Coliforms	TOT	CFU/100 mL	1600000	14000	11000000	9900000	12000000	15000	2500000	16000	3200000	100000	3800000	140000	47000000	1200
Alkalinity - Total - Ph 4.5	TOT	mg/L					180	66			240	54			230	37
Chloride	DIS	mg/L					78	76			120	140			120	120
Total/SAD Cyanide	TOT	mg/L	0.0149	0.0174	0.00099	0.00077	0.00177	0.00168	0.00217	0.0023	0.00232	0.00187	0.00172	0.00193	< 0.0005	0.00093
WAD Cyanide	TOT	mg/L	0.00332	0.0164	0.00145	0.00119	0.0009	0.00107	0.0013	0.00146	0.00088	0.00136	0.00069	0.00125	< 0.0005	0.00076
Alkalinity - Bicarbonate	TOT	mg/L					220	80			290	66			280	46
Alkalinity - Carbonate	TOT	mg/L					<1	<1			<1	<1			<1	<1
Alkalinity - Hydroxide	TOT	mg/L					<1	<1			<1	<1			<1	<1
Alkalinity - Phenolphthalein - Ph 8.3	TOT	mg/L					<1	<1			<1	<1			<1	<1
Hardness (as CaCO3)	DIS	mg/L	82.7	86.5	80.7	85.9	88.7	83.5	104	102	90.4	101	88.1	104	81.8	92.7
Hardness (as CaCO3)	TOT	mg/L	87.6	86.8	90.9	88.1	95.2	84.1	116	101	104	102	98.8	113	94.3	85.9
Sulphate	DIS	mg/L					29	28			32	42			29	34
N - Nh3 (As N)	TOT	mg/L	28	0.099	27	0.039	26	4	0.57	3.4	1.8	0.29	0.44	0.06	43	3.6
N - Nh3 (As N)- Unionized	TOT	mg/L					0.031	0.007			0.0014	< 0.0005			0.071	0.0037
N - No2 (As N)	DIS	mg/L	< 0.002	0.0377	< 0.002	0.0493	< 0.05	1.49	< 0.002	1.78	2.76	2.84	0.0555	3.1	< 0.005	3.63
N - No3 (As N)	DIS	mg/L					<0.2	8.93			11.3	11.4			< 0.02	15.2
N - No3 + No2 (As N)	DIS	mg/L					<0.2	10.4			14	14.2			< 0.02	18.9
N - Tkn (As N)	TOT	mg/L					33.8	<2			40.8	2.74			57.7	0.4
N - Total (As N)	TOT	mg/L					33.8	12.5			54.9	17			57.7	19.3
Organic Carbon	TOT	mg/L					2000	2200			59	16			58	14
P - Po4 - Ortho (As P)	DIS	mg/L					1.9	0.03			4.2	4.9			4.1	2.8
P - Po4 - Total (As P)	TOT	µg/L	4880	745	4990	896	3700	171	9100	6500	6590	5190	6940	5010	6430	3210
Oil & Grease, Mineral	TOT	mg/L	<2	<2	3.6	<2	12	<2	2.4	<2	<2	<2	4.8	<2	2.9	<2
Oil & grease, total	TOT	mg/L	14	<1	21	<1	20	<1	15	<1	18	<1	19	1.1	24	<1
BOD	TOT	mg/L					190	15			270	17			240	19
CBOD	TOT	mg/L					190	4.8			250	5.8			250	8.2
COD	TOT	mg/L					11000	373			865	53			706	58
рН	NoRs	pH	7.53	7.24	7.52	7.12	7.64	7.72		7.14	7.84	7.22		7.46	7.66	7.34
pH	TOT	pH							7.36				7.25			
pH @ 15° C	NoRs	pH					6.63	6.8			6.43	6.39			6.78	6.58
TSS	TOT	mg/L					180	4			120	1.6			240	8.8
H2S	TOT	mg/L													1.9	0.026
Sulfide	TOT	mg/L	0.1	0.014	0.24	0.017	0.42	0.016	<0.0018	0.015	2.2	0.019	3.4	0.015	1.8	0.024
Tetrabromomethane	TOT	μg/L					<50	<50			<50	<50			<50	<50
4-Methyl-2-Pentanone	TOT	μg/L					<10	<10			<10	<10			<10	<10
Dimethyl Ketone	TOT	µg/L					43	22			91	<15			83	22
Endrin Ketone	TOT	ng/L						<0.11				<0.534				<0.104
Isophorone	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Potassium	DIS	mg/L	11.6	10.2	11.9	11.4	10.7	8.83	18	17.6	17.1	16.7	16.7	16.7	17.3	17.1
Potassium	TOT	mg/L	12	10.7	12	11.4	11.2	9.07	18.4	17.7	17.5	16.7	17.5	18.9	17.9	16
Barium	DIS	µg/L	6.82	7.23	8.11	6.17	6.72	6.85	6.7	7.05	6.35	6.44	6.76	8.29	7.48	8.15
Barium	TOT	µg/L	12.5	7.58	14.1	6.75	13.5	7.29	26	7.98	17.4	7.98	19.2	7.99	15.3	8.56
Beryllium	DIS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Beryllium	TOT	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	0.026	<0.01	<0.01	<0.01
Calcium	DIS	mg/L	18.9	21	18.7	20.9	20.6	20.2	20.2	22.8	18.8	21.6	18.6	22.5	18.4	22.1
Calcium	TOT	mg/L	20.6	21.4	22	21.6	22.5	20.5	25.2	22.8	23.3	22.1	21.3	23.9	22.7	20.7
Magnesium	DIS	mg/L	8.61	8.25	8.24	8.18	9.02	8.02	12.9	11	10.6	11.4	10.1	11.5	8.67	9.14
Magnesium	TOT	mg/L	8.75	8.08	8.74	8.31	9.46	7.98	12.9	10.8	11.2	11.3	11	13	9.13	8.28
Thallium	DIS	µg/L	0.0037	<0.002	0.0066	0.002	0.0027	<0.002	0.0034	<0.002	<0.002	< 0.002	0.0051	0.0055	< 0.002	< 0.002

Appendix B4, continued	_															
			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 1	4 2022	Oct. 2	7 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
	TOT		Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
I hallium		µg/L	0.0055	< 0.002	0.0053	<0.002	0.0052	<0.002	0.0119	0.0049	0.0069	<0.002	0.0082	0.0029	0.005	<0.002
Antimony	DIS	µg/L	0.249	0.336	0.159	0.226	0.225	0.208	0.193	0.279	0.226	0.259	0.427	0.402	0.212	0.264
Antimony		<u>μg/L</u>	0.336	0.333	0.303	0.234	0.24	0.22	0.35	0.291	0.231	0.266	0.588	0.434	0.226	0.241
Arsenic	DIS	μg/L	0.315	0.222	0.323	0.242	0.43	0.302	0.368	0.273	0.381	0.259	0.377	0.274	0.356	0.27
Arsenic		µg/L	0.402	0.232	0.485	0.242	0.487	0.314	1.13	0.294	0.44	0.205	0.501	0.280		0.201
Aluminum		<u>μg/L</u>	29.3	11.9	30.2	10.3	20.0	12.2	21.0	12.9	<u> </u>	13.3	43.5	17.7	30.7	10.7
Aluminum		µg/∟	201	24.1	0.425	20.1	0.426	10.4	0.624	24.3	0 722	17.0	207	23	0.742	23.2
		µg/L	0.490	0.252	0.435	0.24	0.430	0.217	0.034	0.313	0.722	0.29	0.704	0.320	0.743	0.53
Tin		μg/L	0.70	0.321	0.62	0.200	0.82	0.247	2.05	0.364	2.04	0.330	0.02	0.340	2.0	0.520
Tin	TOT	<u>µg/∟</u>	1.36	0.4	1.52	0.39	0.02	0.41	1.54	0.7	1.11	0.05	0.92	0.41	1.08	0.7
Phoenborus		<u>µg/∟</u>	2070	573	3520	706	2400	80	5440	6290	1.23	5310	4000	4220	1.00	3440
Selenium		µg/∟	0.233	0.11	0.276	0 131	0 181	0.106	0 303	0230	0.234	0 159	4000	0 150	0 132	0.16
Selenium	TOT	μg/L	0.200	0.118	0.270	0.131	0.101	0.100	0.503	0.170	0.234	0.153	0.230	0.133	0.152	0.10
	тот	pg/∟ 			<0.024	<0.10	<0.200				0.203		0.40		<0.005	
Chromium VI	тот	mg/L	<0.005		<0.005	<0.00099	<0.005		0.00033			0.00033	<0.0019	0.0028	<0.005	0.00033
Dibutyltin	тот				<0.000		<0.000	<0.00000	0.0047					0.0020	<0.000	<0.0040
Dibutyltin Dichloride	TOT	<u>µg, c</u> ug/l					<0.001	<0.001							<0.001	<0.001
Methyl Mercury	TOT	ng/L					0.446	<0.023			< 0.05	< 0.05			0.1	<0.05
MonobutyItin	TOT	ug/l					0.002	<0.020							0.013	0.028
Monobutyltin Trichloride	TOT	<u>µg; =</u> ua/L					0.004	0.005							0.02	0.045
Tributyltin	TOT	<u>µg; =</u> ua/L					< 0.001	<0.001							< 0.001	<0.001
Tributyltin Chloride	TOT	<u>µg/</u>					< 0.001	< 0.001							< 0.001	< 0.001
Cadmium	DIS	<u>ua/L</u>	0.0234	0.0264	0.0375	0.019	0.025	0.0073	0.0259	0.0068	0.0399	< 0.005	0.0492	0.0087	0.0327	0.0122
Cadmium	TOT	ug/L	0.232	0.0329	0.243	0.0256	0.116	0.0054	0.281	0.0144	0.2	0.0108	0.29	0.0097	0.162	0.017
Chromium	DIS	µg/L	0.39	0.33	0.54	0.37	0.44	0.33	0.64	0.55	0.63	0.57	0.77	0.54	0.66	0.58
Chromium	TOT	µg/L	1.01	0.37	1.5	0.38	0.72	0.34	2.72	0.62	1.16	0.6	1.92	0.61	1.24	0.61
Cobalt	DIS	µg/L	0.279	0.245	0.276	0.228	0.238	0.214	0.309	0.354	0.34	0.314	0.297	0.275	0.22	0.29
Cobalt	TOT	µg/L	0.414	0.257	0.45	0.246	0.331	0.216	0.613	0.369	0.526	0.318	0.517	0.324	0.395	0.287
Copper	DIS	µg/L	24.9	6.11	19.6	6.79	23.1	4.69	37.6	8.97	45.9	7.69	42.2	10.3	32.8	11.9
Copper	TOT	µg/L	42.2	7.84	46.7	7.89	39.3	6.18	94.8	14	68.1	11.6	84.5	12	58.4	15.2
Iron	DIS	µg/L	167	50.5	291	60.4	143	69.8	161	110	228	112	203	100	390	159
Iron	TOT	µg/L	461	69.5	565	86.3	251	74.6	632	144	479	121	556	136	494	148
Manganese	DIS	µg/L	27.4	28.8	33.3	24.6	25	26.6	31.3	36.7	31.7	34.8	28.2	34.6	29.5	36.1
Manganese	TOT	µg/L	38.4	30.2	43.2	34.6	34.3	27.6	54.5	38	49.3	36	44.1	38.4	39.6	34.7
Mercury	DIS	µg/L	<0.038	<0.0019	<0.038	<0.0019	0.0036	<0.0019	0.005	<0.0019	0.0066	<0.0019	0.0039	<0.0019	0.002	<0.0019
Mercury	TOT	µg/L	<0.038	<0.0019	<0.038	<0.038	<0.019	<0.0019	<0.038	<0.038	<0.038	<0.0019	<0.038	<0.0019	<0.019	0.0025
Molybdenum	DIS	µg/L	1.36	0.867	0.909	1.2	3.55	1.18	1.28	0.702	1.12	0.529	0.716	0.923	0.533	0.645
Molybdenum	TOT	µg/L	1.81	0.877	2.11	1.19	3.14	1.2	2	0.71	0.946	0.545	1.37	1.12	0.71	0.624
Nickel	DIS	µg/L	1.76	1.54	2.48	1.79	1.78	1.31	2.25	2.31	3.91	2.51	2.05	2.14	2.12	2.06
Nickel	TOT	µg/L	2.33	1.66	3.37	1.74	2.43	1.41	4.22	2.37	4.93	2.49	2.95	2.47	2.62	1.99
Silver	DIS	µg/L	0.0346	0.0076	0.0171	<0.005	0.042	0.0069	0.0426	0.0077	0.0504	0.0114	0.0568	0.0085	0.0456	0.0083
Silver	TOT	µg/L	0.366	0.013	0.126	0.013	0.07	0.012	0.3	0.028	0.037	0.016	0.298	0.021	0.037	0.021
Zinc	DIS	µg/L	29.2	33.5	9.64	30.9	26.7	22	29.2	25.5	37	21.7	33.5	21.4	14.9	40.9
Zinc	TOT	µg/L	78.6	34.7	89.7	33	71.6	23.1	167	30.1	164	24.5	132	25.6	106	39.1
1,1,1,2-Tetrachloroethane	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
Dichlorodifluoromethane	TOT	µg/L					<2	<2			<2	<2			<2	<2
Nitrobenzene	TOT	µg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
N-nitrosodimethylamine	TOT	µg/L					<1	<1			<1	<1			<1	<1
N-Nitrosodi-N-Propylamine	TOT	µg/L					<1	<1			<1	<1			<1	<1
Benzene	TOT	µg/L					<0.4	<0.4			<0.4	<0.4			<0.4	<0.4

Aı	opendix	B4.	continued	
<i>'</i> 4	pponiai	· • ·,	0011111000	

			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1:	2 2022	Jul. 1:	3 2022	Jul. 1	4 2022	Oct. 2	7 2022
Peremeter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
Parameter			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
Ethylbenzene	TOT	μg/L					<0.4	<0.4			<0.4	<0.4			<0.4	<0.4
Toluene	TOT	μg/L					0.66	<0.4			0.97	0.79			1.6	<0.4
Xylenes	TOT	μg/L					<0.4	<0.4			<0.4	<0.4			<0.4	<0.4
1,2,3,4-Tetrachlorobenzene	TOT	ng/L						<0.22				<1.07				<0.207
1,3,5-Trichlorobenzene	TOT	ng/L						<0.22				<1.07				<0.207
1,4-Dioxane	TOT	μg/L					0.27	0.31			<1	<1			0.21	0.27
1,7-Dimethylxanthine	TOT	ng/L									36000	231			37500	241
Acrolein	NoRs	μg/L					<2.8	<2.8			3.1	<2.8			<2.8	<2.8
Acrylonitrile	TOT	μg/L					<1	<1			<1	<1			<1	<1
Delta-Hch Or Delta-Bhc	TOT	ng/L						<0.11				<0.534				<0.104
Dibromomethane	TOT	μg/L					<2	<2			<2	<2			<2	<2
Pentachlorobenzene	TOT	ng/L						0.042				<0.107				0.033
Perfluorobutanoic acid	TOT	ng/L					15	11.7			24.1	13.1			<12	13.7
Tetrachloromethane	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
Trans-Chlordane	TOT	ng/L						<0.0441				<0.214				<0.0414
Trans-Nonachlor	TOT	ng/L						0.091				<0.214				<0.0414
Tribromomethane	TOT	μg/L					<1	<1			<1	<1			<1	<1
Trichloromethane	TOT	μg/L					3.2	1.2			3.7	1.8			2.8	1.3
1,2-diphenylhydrazine	TOT	μg/L					<0.05	<0.05			< 0.05	<0.05			<0.05	<0.05
2,4-dinitrotoluene	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
2,6-dinitrotoluene	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
3,3-dichlorobenzidine	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
4-Bromophenyl Phenyl Ether	TOT	μg/L					<0.05	< 0.05			< 0.05	< 0.05			<0.05	< 0.05
4-Chlorophenyl Phenyl Ether	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Hexachlorocyclopentadiene	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Hexachloroethane	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Alpha-Terpineol	TOT	μg/L					<5	<5			6.7	<5			8.2	<5
1,1,1-trichloroethane	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,1,2,2-tetrachloroethane	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,1,2-trichloroethane	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,1-dichloroethane	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,1-dichloroethene	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,2,3-Trichlorobenzene	TOT	ng/L						<0.22				<1.07				<0.207
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	TOT	ng/L						<0.22				<1.07				<0.207
1,2,4-trichlorobenzene	TOT	μg/L					<0.2	<0.2			<0.2	<0.2			<0.2	<0.2
1,2,4-trichlorobenzene	TOT	ng/L						0.515				<1.07				<0.207
1,2-dibromoethane	TOT	μg/L					<0.2	<0.2			<0.2	<0.2			<0.2	<0.2
1,2-dichlorobenzene	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,2-dichlorobenzene	TOT	ng/L						<0.459				-999				0.815
1,2-dichloroethane	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,2-dichloropropane	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,3-dichlorobenzene	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,3-dichlorobenzene	TOT	ng/L						1.81				-999				<0.207
1,4-dichlorobenzene	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
1,4-dichlorobenzene	TOT	ng/L						21.5				-999				33.2
Bromodichloromethane	TOT	μg/L					<1	<1			<1	<1			<1	<1
Bromomethane	TOT	μg/L					<1	<1			<1	<1			<1	<1
Chlorobenzene	TOT	µg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
Chlorodibromomethane	TOT	μg/L					<1	<1			<1	<1			<1	<1
Chloroethane	TOT	μg/L					<1	<1			<1	<1			<1	<1
Chloroethene	TOT	μg/L					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5

			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 14	4 2022	Oct. 2	7 2022
Parameter			Influent Q+	Effluent Q+	Influent Quarterly	Effluent Quarterly	Influent Q+	Effluent Q+	Influent Quarterly	Effluent Quarterly	Influent Q+	Effluent Q+	Influent Quarterly	Effluent Quarterly	Influent Quarterly	Effluent Quarterly
Chloromethane	TOT	µg/L					<1	<1			<1	<1			<1	<1
Cis-1,2-Dichloroethene	TOT	µg/L					<1	<1			<1	<1			<1	<1
cis-1,3-dichloropropene	TOT	µg/L					<1	<1			<1	<1			<1	<1
Hexachlorobutadiene	TOT	µg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Hexachlorobutadiene	тот	ng/L						0.17				1.54				0.225
M & P Xvlenes	TOT	ug/L					<0.4	<0.4			<0.4	<0.4			<0.4	<0.4
Methyl Ethyl Ketone	тот	ug/L					<50	<50			<50	<50			<50	<50
Methyl Tertiary Butyl Ether	тот	ug/L					<4	<4			<4	<4			<4	<4
O-Xvlene	TOT	ua/L					<0.4	< 0.4			<0.4	< 0.4			<0.4	< 0.4
Styrene	TOT	ug/L					< 0.5	< 0.5			< 0.5	< 0.5			< 0.5	< 0.5
Tetrachloroethene	TOT	ug/L					< 0.5	< 0.5			<0.5	< 0.5			< 0.5	< 0.5
Trans-1.2-Dichloroethene	TOT	ug/L					<1	<1			<1	<1			<1	<1
trans-1.3-dichloropropene	TOT	ug/L					<1	<1			<1	<1			<1	<1
Trichloroethene	TOT	<u>µg/</u>					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
Trichlorofluoromethane	TOT	<u>µg/</u>					<4	<4			<4	<4			<4	<4
17 beta-Estradiol 3-benzoate	TOT	na/L					<4.7	<0.741			<1.93	<0.763			<12.3	<5.38
Allyl Trenbolone	TOT	ng/l					<2.41	<2.88			<7.28	<1.26			<10	<1 12
Androstenedione	TOT	ng/L					230	3.54			245	7.89			296	5.67
Androsterone	TOT	ng/L					<228	<202			54.8	<202			-999	<303
Desogestrel	TOT	ng/L					<1000	<201			<601	<146			<2090	<70.5
Mestranol	TOT	ng/L					<717	<18.5			-999	<39.4			-999	<81.9
Norethindrone	TOT	ng/L					<9.12	<7.34			<3.72	<4.35			<17.6	<7 19
norgestrel	TOT	ng/L					<56.9	<3.22			<18.1	<4.00			<36.4	<3.97
Progesterone	TOT	ng/L					44.8	<1.04			26.2	<2.51			50.6	<0.07
Testosterone	TOT	ng/L					57.3	<1.04			67.6	<1.15			52	<0.879
Total Phenols	TOT	mg/L					0.034	<0.0015			0.056	<0.0075			0.058	0.0022
24 + 25 Dichlorophenol	TOT	ug/L					<0.5	<0.0010			<0.5	<0.5			<0.5	<0.5
2 4 6-Tribromonhenol	TOT	<u>µg/∟</u> %					61	68			46	102			54	60
2-Chlorophenol	TOT	Uq/l					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
4-Chloro-3-Methylphenol	TOT	<u>μg/L</u> μg/l					<0.0	<0.0			<0.0	<0.0			<0.0	<0:0
Pentachlorophenol	TOT	μg/L μg/l					<0.5	<0.5			<0.5	<0.5			<0.5	<0.5
2 4-dimethylphenol	TOT	μ <u>g/L</u> μ <u>α</u> /l					<0.0	<0.0			< 2.5	<0.0			<0.0	<0.0
2.4-dinitrophenol	TOT	μ <u>g/L</u> μ <u>α</u> /l					<6.5	<6.5			<6.5	<6.5			<6.5	<6.5
2-Methyl-4 6-Dinitrophenol	TOT	<u>μg/L</u> μg/l					<2.5	<2.5			<2.5	<2.5			<2.5	<2.5
2-Nitrophenol	TOT	μg/L μg/l					<2.5	<2.5			<2.5	<2.5			<2.5	<2.5
Phenol	TOT	μg/L μg/l					9.4	<2.5			11.4	<2.5			13.2	<2.5
	TOT	μg/L μg/l					-0.5	<2.5			<0.5	<0.5			<0.5	<0.5
Conductivity	TOT	µg/⊑ uS/cm					680	510			1000	790			960	<0.0 710
17 alpha-Dibydroequilin	TOT						-6 32	<1.85			-1 92	/ 90			<7.69	/ 10
17 alpha-Birlydroeqdiin 17 alpha-Estradiol	TOT	ng/L					<0.52	<7.41			< 8.34	<7.63			<30.8	10.2
17 alpha Estradiol	TOT	ng/L					<15.8	<6.31			<0.04	<1.00			<38.2	<0.28
17 beta-Estradiol	TOT	ng/L					<20.6	< 3.71			<31.1	<3.81			<10.2	25.4
	TOT	ng/L					<20.0	<0.396			<374	<1.18			12	20.4 ~1.95
Equilin	TOT	ng/L					< 5.00	<0.390			<1.02	<1.10			<7.69	<1.95
Estrial	TOT	ng/L					106	<11.00			233	<17.4			166	<7.07
Estrone		ng/L					<u>41 2</u>	74 /			<u>233</u> <u>1</u> 07	50.6			64.2	150
4-Nitronhenol							~25	-25			-73.1 -25	~25			~2 F	-25
4-n-Octylphenol							~2.5	1 22			~7.30	×2.0 0.00			~5.0	0.765
4-Nonvinhenol Diethovvilates						L 	726	1.22			×1.30 125	<u> 2.22</u> 75.2			<u><0.2</u> 620	66.0
A-Nonvinhenol Monoethovulates	TOT						1860	680			2670	/ J.S			1060	/1Q
Nn							001	500			1/2010	413			1040	410
ЧИ		ng/∟					301	0.0			1400	43.7			1040	17.4

			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 12	2 2022	Jul. 1:	3 2022	Jul. 14	4 2022	Oct. 2	7 2022
Parameter			Influent Q+	Effluent Q+	Influent Quarterly	Effluent Quarterly	Influent Q+	Effluent Q+	Influent Quarterly	Effluent Quarterly	Influent Q+	Effluent Q+	Influent Quarterly	Effluent Quarterly	Influent Quarterly	Effluent Quarterly
1-Methylphenanthrene	TOT	ng/L					7.42	<0.958			19.8	1.06			11.4	1.4
2,3,5-trimethylnaphthalene	TOT	ng/L					17.8	1.75			35.2	2.38			8.6	1.7
2,6-dimethylnaphthalene	TOT	ng/L					26.5	1.59			66.3	3.32			9.15	1.2
2-Chloronaphthalene	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
2-Methylnaphthalene	TOT	µg/L					0.021	< 0.01			0.038	< 0.01			0.024	<0.01
2-Methylnaphthalene	TOT	ng/L					22.4	3.21			45.9	3.95			28.6	3.03
Acenaphthene	TOT	µg/L					0.018	<0.01			0.023	<0.01			0.18	0.018
Acenaphthene	TOT	ng/L					22	3.69			43.1	8.28			91.6	18.3
Acenaphthylene	TOT	µg/L					<0.01	<0.01			0.021	<0.01			0.086	<0.01
Acenaphthylene	TOT	ng/L					0.65	<0.439			0.772	0.31			1.16	0.622
Anthracene	TOT	µg/L					<0.01	<0.01			<0.01	<0.01			<0.01	<0.01
Anthracene	TOT	ng/L					2.79	<0.584			4.93	<1.19			6	<0.375
Benzo(B)Fluoranthene + Benzo(J)Fluoranthene	TOT	μg/L					<0.01	<0.01			<0.01	<0.01			0.047	0.014
Benzo(K)Fluoranthene	TOT	μg/L					<0.01	<0.01			<0.01	<0.01			<0.01	<0.01
Benzo[a]anthracene	TOT	µg/L					<0.01	<0.01			<0.01	<0.01			<0.01	<0.01
Benzo[a]anthracene	TOT	ng/L					1.87	<0.221			4.97	<0.156			4.92	0.217
Benzo[a]pyrene	TOT	μg/L					< 0.005	< 0.005			<0.005	< 0.005			<0.005	< 0.005
Benzo[a]pyrene	TOT	ng/L					1.38	<0.53			3.17	<0.59			3.67	<0.456
Benzo[b]fluoranthene	TOT	μg/L					<0.01	<0.01			<0.01	<0.01			0.015	0.014
Benzo[b]fluoranthene	TOT	ng/L					1.43	<0.328			3.94	<0.109			5.12	0.368
Benzo[e]pyrene	TOT	ng/L					2.16	<0.496			4.66	<0.552			3.78	<0.438
Benzo[ghi]perylene	TOT	μg/L					<0.02	<0.02			<0.02	<0.02			<0.02	<0.02
Benzo[ghi]perylene	TOT	ng/L					1.18	<0.487			4.94	<0.7			4.03	0.268
Benzo[J,K]Fluoranthenes	TOT	ng/L					1.28	<0.382			4.97	<0.435			4.14	<0.334
Chrysene	TOT	µg/L					<0.01	<0.01			<0.01	<0.01			<0.01	<0.01
Chrysene	TOT	ng/L					2.51	0.411			4.36	0.486			11.7	0.785
dibenzo(a,h)anthracene	TOT	µg/L					<0.02	< 0.02			< 0.02	<0.02			<0.02	<0.02
dibenzo(a,h)anthracene	TOT	ng/L					<1.22	<0.976			6.75	<0.122			0.724	<0.238
Dibenzothiophene	TOT	ng/L					7.69	1.39			20.2	1.67			32.5	2.7
Fluoranthene	TOT	µg/L					0.02	<0.01			0.025	<0.01			0.079	0.024
Fluoranthene	TOT	ng/L					21.8	2.76			47.2	5.36			80.2	10.5
Fluorene	TOT	µg/L					0.02	<0.01			0.015	< 0.01			0.091	0.016
Fluorene	TOT	ng/L					14.9	2.77			29.5	3.73			56.6	8.43
High Molecular Weight PAH's	101	µg/L					0.034	< 0.02			0.044	< 0.02			0.18	0.053
Indeno(1,2,3-C,D)Pyrene	101	µg/L					<0.02	<0.02			<0.02	<0.02			<0.02	<0.02
Indeno(1,2,3-C,D)Pyrene		ng/L					2.37	<0.615			<0.788	0.57			3.08	0.318
Low Molecular Weight PAH s		µg/L					0.16	<0.01			0.22	0.023			0.82	0.082
Naphthalana		µg/L					0.038	<0.01			0.037	0.011			0.15	0.015
Naphthalene		ng/L					32.7	0.00			00.7	1.11			127	9.48
Perylette		ng/L					<0.650	<0.515			<1.25	<0.594			1.25	<0.461
Phenanthrana		µg/L					0.05	<0.01			0.059	0.012			0.22	0.034
Prienanumene		ng/L					73.4	11.4			145	0.014			204	20
Pyrono		µg/∟					15 4	<0.01			0.02	0.014			0.034	0.015 5.02
							0.2	<u> </u>			0.26	2.40 0.027			41./	0.12
							0.2	<0.02 ~1.0			0.20	0.037				0.13
Phde 10								<u> </u>				-2 07				
Pbde 100								157				~2.31				
Pbde 100	TOT											376				<u></u>
Pbde 105	тот							<2.63								
Pbde 105	TOT	pg/9										<2.58				<3.3
			1	1		1	1	I	L	1	I	~2.00	1	1		NO.0

Appendix B4, continued																
			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 1	4 2022	Oct. 2	27 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
Pbde 116	101	pg/g						<3.13								
Pbde 116	101	pg/L										18.2				<3.55
Pbde 119/120		pg/g						3.34								
Pbde 119/120		pg/L										4.2				6.49
Pbde 12/13		pg/g						<1.39								
Pbde 12/13		pg/L										2.8				0.867
		pg/g						<1.39								
Pbde 126		pg/L										<1.35				<1.58
Pbde 128		pg/g						<2.99								
Pbde 128		pg/L										<4.18				<2.42
Pbde 138/166		pg/g						8.73								
Pbde 138/100		pg/L										20.6				20.7
Pbde 140		pg/g						2.73				 F 65				
Pbde 140		pg/L										5.05				7.03
Pbde 15		pg/g						1.57								
Pbde 15		pg/L										3.14				2.74
Pbde 153		pg/g						02.2								101
Pbde 153		pg/∟										104				101
Pbde 154		pg/g						49.0								145
Pbde 154	TOT	pg/L						 5 22				121				145
Pbde 155	TOT	pg/g						5.25				0.05				12.4
Pbde 135	TOT	pg/∟						7.02				9.95				12.4
Pbde 17/25	TOT	pg/g						1.92				26.0				10.0
Pbde 181	TOT							~1 30				20.9				19.9
Pbde 181	TOT							<1.39								~1.37
Pbde 183	TOT							10.7				<2.00				<1.57
Pbde 183	тот											20.9				25.7
Phde 190	TOT							<1.88								
Pbde 190	тот											<3.93				<2 44
Pbde 203	TOT							9 77								
Pbde 203	TOT	pg/g										19.1				18.2
Pbde 206	TOT	pa/a						3.8								
Pbde 206	TOT	pa/L										115				69.4
Pbde 207	TOT	pa/a						103								
Pbde 207	TOT	pa/L										156				90.6
Pbde 208	TOT	pq/q						58.9								
Pbde 208	TOT	pg/L										84.4				61.8
Pbde 209	TOT	pg/g						963								
Pbde 209	TOT	pg/L										2050				2250
Pbde 28/33	TOT	pg/g						21.6								
Pbde 28/33	TOT	pg/L										50.2				54.9
Pbde 30	TOT	pg/g						<1.39								
Pbde 30	TOT	pg/L										<2.75				<1.2
Pbde 32	TOT	pg/g						<1.39								
Pbde 32	TOT	pg/L										<2.09				<0.94
Pbde 35	TOT	pg/g						<1.39								
Pbde 35	TOT	pg/L										<1.89				<0.853
Pbde 37	TOT	pg/g						5.07								
Pbde 37	TOT	pg/L										9.64				9.27
Pbde 47	TOT	pg/g						784								

			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1:	3 2022	Jul. 14	4 2022	Oct. 2	7 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
Pbde 47	TOT	pg/L										1950				2000
Pbde 49	TOT	pg/g						20.7								
Pbde 49	TOT	pg/L										47.7				44.3
Pbde 51	TOT	pg/g						1.97								
Pbde 51	TOT	pg/L										5.39				6.07
Pbde 66	TOT	pg/g						18.7								
Pbde 66	TOT	pg/L										45.1				46.4
Pbde 7	TOT	pg/g						<1.78								
Pbde 7	TOT	pg/L										2.83				3.21
Pbde 71	TOT	pg/g						3.45								
Pbde 71	TOT	pg/L										6.8				7.7
Pbde 75	TOT	pg/g						<1.39								
Pbde 75	TOT	pg/L										3.96				3.55
Pbde 77	TOT	pg/g						<1.39								
Pbde 77	TOT	pg/L										<1.35				0.855
Pbde 79	TOT	pg/g						5.66								
Pbde 79	TOT	pg/L										<1.35				7.65
Pbde 8/11	TOT	pg/g						<1.39								
Pbde 8/11	TOT	pg/L										2.22				0.703
Pbde 85	TOT	pg/g						32.7								
Pbde 85	TOT	pg/L										84.6				84.9
Pbde 99	TOT	pq/q						745								
Pbde 99	TOT	pg/L										1860				2050
Decachloro Biphenyl	TOT	pg/L						<-999				2.24				3.16
PCB	TOT	pg/L						6.47				4.93				22.3
PCB 10	TOT	pg/L						<2.81				<2.19				<1.56
PCB 103	TOT	pg/L						0.724				<0.749				< 0.835
PCB 104	TOT	pg/L						< 0.697				< 0.677				<0.66
PCB 105	TOT	pg/L						4.32				9.59				7.48
PCB 106	TOT	pa/L						< 0.697				< 0.704				<1.11
PCB 107/124	TOT	pg/L						< 0.697				0.88				<1.19
PCB 109	TOT	pg/L						0.956				2.08				1.52
PCB 11	TOT	pa/L						38.2				80.7				83.7
PCB 110/115	TOT	pg/_						11.7				30.4				28.5
PCB 111	TOT	pa/L						< 0.697				< 0.677				<0.713
PCB 112	TOT	pa/L						< 0.697				< 0.677				< 0.672
PCB 114	TOT	pg/_						0.96				0.991				<1.18
PCB 118	TOT	pg/L						10.6				30.5				20.4
PCB 12/13	TOT							<2.99				<2.14				42
PCB 120	TOT							<0.697				<0.677				<0.667
PCB 121	TOT							<0.697				<0.677				<0.728
PCB 122	TOT							<0.783				<0.771				<1.25
PCB 123	TOT							<0.802				1 26				<1.31
PCB 126	TOT	na/l						<0.82				<0.806				<1 23
PCB 127	TOT	na/l						<0.02				<0.000				<1 17
PCB 128/166	TOT							1 71				3.37				2 89
PCB 129/138/160/163	TOT	na/l						13.8				27.8				2.00
PCB 130	TOT	na/l						<0.697				1 92				2.69
PCB 131	TOT	na/l						<0.697				<0.847				<1.38
PCB 132	тот							4 36				8.81				7 9/
PCB 133	TOT							<0.607				- 0.01				<1 3/
		P9' -	1		1	1		20.001	1		1	NO.10	1	1	1	1.04

Parameter Jon. 18 2002 Jon. 18 2002 <th>Appendix B4, continued</th> <th></th>	Appendix B4, continued																
Paramet Initiant Officiant Initiant				Jan. 1	8 2022	Jan. 2	20 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 1	4 2022	Oct. 2	7 2022
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DCB 124/142	тот	pg/l	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+ 1 29	Quarterly	Quarterly	Quarterly	
Constrain Constrain <thconstrain< th=""> <thconstrain< th=""> <thc< td=""><td>PCB 135/151/154</td><td></td><td>pg/L</td><td></td><td></td><td></td><td></td><td></td><td>0.730</td><td></td><td></td><td></td><td>1.30</td><td></td><td></td><td></td><td><1.41 9.04</td></thc<></thconstrain<></thconstrain<>	PCB 135/151/154		pg/L						0.730				1.30				<1.41 9.04
PCB 197 TOT Avg1 .	PCB 135/151/154		pg/L						3.70				3 00				0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 137								-0.697				2.99				2 32
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PCB 130/1/0								<0.097				-0.76				<u> </u>
PCB141 TOT PgL m <	PCB 14	тот							<2.85				<2.08				<1.52
PCB 14/2 TOT OgL ···	PCB 141	тот							1 99				3.98				3 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 142	тот							<0.697				<0.00				<1 44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 144	ТОТ							0 738				1 15				1 45
PCB 149 TOT DQL an an an an 22 an an an 597 an an an 4.14 PCB 1471 DQL TOT DQL an an an an bot bot bot PCB 147 TOT DQL an an an an bot bot bot PCB 15 TOT DQL an an an an bot bot bot bot bot PCB 160 TOT DQL an an an an bot bot bot bot bot PCB 160 TOT DQL an an an an bot bot bot an an bot PCB 160 TOT DQL an an an an bot bot an an an bot PCB 160 TOT DQL an an an an bot an an an an an bot PCB 160 TOT DQL an	PCB 145	тот	pg/L						<0.697				<0.677				<0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 146	TOT	pg/L						2.2				5.97				4.14
PCB 149 TOT pgL	PCB 147/149	TOT	pg/=						8.23				22.4				15.9
PCB 15 TOT pgl. <	PCB 148	TOT	pa/L						< 0.697				<0.677				<0.689
PCB 150 TOT pql in in< <	PCB 15	ТОТ	pa/L						4.11				9.21				11.3
PC6 152 FOT ogL ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···<	PCB 150	TOT	pa/L						<0.697				<0.677				<0.66
PC0 153/168 TOT pg/L ind ind <t< td=""><td>PCB 152</td><td>TOT</td><td>pg/L</td><td></td><td></td><td></td><td></td><td></td><td>< 0.697</td><td></td><td></td><td></td><td><0.677</td><td></td><td></td><td></td><td><0.66</td></t<>	PCB 152	TOT	pg/L						< 0.697				<0.677				<0.66
PCB 155 TOT pQL ··· ··· ··· ··· 0.993 ··· ··· 1.89 ··· ··· 2.22 PCB 158/S TOT pQL ··· ··· ··· 0.87 ··· ··· 2.66 ··· ··· 2.67 PCB 159 TOT pQL ··· ··· ··· 0.872 ··· ··· 0.673 ··· ··· 2.66 ··· ··· 2.66 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ··· 0.677 ··· ···< 0.677 ··· ···· 0.677 ··· <	PCB 153/168	TOT	pg/L						13.4				29.6				23.5
PCB 156167 TOT pg/L <th< td=""><td>PCB 155</td><td>TOT</td><td>pg/L</td><td></td><td></td><td></td><td></td><td></td><td>0.993</td><td></td><td></td><td></td><td>1.89</td><td></td><td></td><td></td><td>2.92</td></th<>	PCB 155	TOT	pg/L						0.993				1.89				2.92
PCB 158 TOT pylL 0.872 2.46 2.06 PCB 159 TOT pylL 2.069 8.44 5.44 PCB 151 TOT pylL 2.069 8.44 8.44 PCB 151 TOT pylL 2.0697 8.44 1.04 PCB 152 TOT pylL	PCB 156157	TOT	pg/L						1.69				2.6				3.26
PCB 159 TOT pgl, ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ····< ····< ····< ····< ···· ···· ···< ···< ····< ····< ····< ···· ···· ···· ···· ···· ····	PCB 158	TOT	pg/L						0.872				2.46				2.19
PCB 16 TOT pg/L ··· ··· ··· 2.0 ··· ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 ··· 0.0 0.0 ··· 0.0 0.0 ··· 0.0 0.0 ··· 0.0 0.0 ··· 0.0 0.0 ··· 0.0	PCB 159	TOT	pg/L						<0.697				<0.677				<1.01
PCB 161 TOT pg/L ····· ····· <td>PCB 16</td> <td>TOT</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.69</td> <td></td> <td></td> <td></td> <td>8.44</td> <td></td> <td></td> <td></td> <td>5.84</td>	PCB 16	TOT	pg/L						2.69				8.44				5.84
PCB 162 TOT pgL ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ····< ····< ····< ····< ····< ····< ····< ····< ····< ····< ····< ····< ····< ····< ····< ···· ···· ···· ····< ····< ····< ····< ···· ···· ···· ···· <td>PCB 161</td> <td>TOT</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.697</td> <td></td> <td></td> <td></td> <td><0.677</td> <td></td> <td></td> <td></td> <td><1.04</td>	PCB 161	TOT	pg/L						<0.697				<0.677				<1.04
PCB 164 TOT pg/L ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···<	PCB 162	TOT	pg/L						<0.697				<0.677				<1.02
PCB 165 TOT pg/L ···· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····<	PCB 164	TOT	pg/L						1.05				1.62				1.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 165	TOT	pg/L						<0.697				<0.677				<1.13
PCB 169 TOT pg/L	PCB 167	TOT	pg/L						1.08				<0.677				1.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PCB 169	TOT	pg/L						<0.697				<0.677				<1.04
PCB 170 TOT pg/L 2.27 4.66 4.70 PCB 17/173 TOT pg/L	PCB 17	TOT	pg/L						2.47				6.63				5.41
PCB 1/1/1/3 IOI pg/L 1.42 PCB 172 TOT pg/L 1.26 0.82 PCB 175 TOT pg/L 0.697 0.677 0.66 PCB 175 TOT pg/L 0.697 0.62 0.62 PCB 175 TOT pg/L 0.697 0.718 0.62 PCB 176 TOT pg/L 0.697 1.84 2.26 PCB 175 pg/L 0.697 1.84 1.31 PCB 180 pg/L	PCB 170		pg/L						2.27				4.06				4.56
PCB 172 IOI pg/L III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PCB 171/173	TOT	pg/L						<0.697				<0.677				1.42
PCB 175 TOT pg/L 1.36 1.34 1.36 1.34 1.36 1.36 1.36 1.36 1.36 1.36 1.31 1.36	PCB 172		pg/L						<0.697				1.26				0.82
PCB 176 TOT pg/L 20.697 2.52 2.66 PCB 177 TOT pg/L 1.53 1.84 2.52 1.36 PCB 178 TOT pg/L 0.793 1.84 2.34 PCB 180/193 TOT pg/L 6.56 1.44 1.11 PCB 180/193 TOT pg/L 6.42 1.19 1.13 PCB 180/193 TOT pg/L 6.42 1.19 1.13 PCB 180/193 TOT pg/L 6.42	PCB 175		pg/L						<0.697				<0.677				<0.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 176		pg/L						<0.697				0.718				<0.66
PCB 178 TOT pg/L 1.04 1.35 PCB 179 TOT pg/L 2.34 2.34 PCB 18/30 TOT pg/L 6.56 14.4 11.1 PCB 18/30 TOT pg/L 6.56 14.4 11.1 PCB 18/0193 TOT pg/L 6.62 14.4 13.1 PCB 180/193 TOT pg/L 6.62 40.677 40.66 PCB 182 TOT pg/L 40.697 40.7 PCB 183/185 TOT pg/L <			pg/L						1.53				2.52				2.00
PCB 193 TOT pg/L III IIII IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PCB 170		pg/L						<0.697				1.04				1.30
PCB 18/30 TOT pg/L 0.00 14.4 11.1 PCB 180/193 TOT pg/L 0.00 11.1 11.1 PCB 180/193 TOT pg/L 0.00 0.00 11.1 PCB 181 TOT pg/L 0.00 0.00 0.00 0.00	PCB 19/20		pg/L						0.793				2.34				11 1
PCB 181 TOT pg/L	PCB 180/103		pg/L						6.42				14.4				13.1
TOT pg/L - <td>PCB 181</td> <td></td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.42</td> <td></td> <td></td> <td></td> <td><0.677</td> <td></td> <td></td> <td></td> <td><0.66</td>	PCB 181		pg/L						<0.42				<0.677				<0.66
FOD 102 FOT 102 PgL 1.07 1.037 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	PCB 182								<0.097				<0.677				<0.00
PCB 184 TOT pg/L 1.41 2.81 4.07 PCB 184 TOT pg/L 1.41 2.81 2.81 4.07 PCB 186 TOT pg/L 2.81 4.07 PCB 186 TOT pg/L 2.81 4.07 PCB 187 TOT pg/L 3.77 4.067 4.07 PCB 188 TOT pg/L 4.0697 4.0677 4.0855 PCB 190 TOT pg/L <	PCB 183/185	тот	pg/L						1 97				3.81				3 34
PCB 186 TOT pg/L 2.67	PCB 184		pg/L						1.07				2.81				4 07
PCB 187 TOT pg/L 3.77 10.1 7.09 PCB 187 TOT pg/L 3.77 10.1 7.09 PCB 188 TOT pg/L 10.1 7.09 PCB 188 TOT pg/L	PCB 186	тот							<0.697				<0.677				<0.66
PCB 188 TOT pg/L	PCB 187	ТОТ							377				10.1				7 09
PCB 189 TOT pg/L <-0.697 <0.677 <0.855 PCB 19 TOT pg/L 2.13 2.57 1.78 PCB 190 TOT pg/L <0.697	PCB 188	TOT	pg/L						< 0.697				<0.677				<0.66
PCB 19 TOT pg/L 2.13 2.57 1.78 PCB 190 TOT pg/L 1.78 PCB 190 TOT pg/L 1.78 PCB 191 TOT pg/L 1.78 PCB 191 TOT pg/L 1.78 PCB 192 TOT pg/L 0.909 PCB 192 TOT pg/L PCB 192 TOT pg/L <	PCB 189	ТОТ	pa/L						< 0.697				< 0.677				< 0.855
PCB 190 TOT pg/L <-0.697 <-0.677 0.909 PCB 191 TOT pg/L <	PCB 19	TOT	pa/L						2.13				2.57				1.78
PCB 191 TOT pg/L <-0.697 <-0.677 <-0.667 PCB 192 TOT pg/L <-0.697	PCB 190	TOT	pa/L						< 0.697				<0.677				0.909
PCB 192 TOT pg/L <0.697 <0.697 <0.677 <0.677 <0.677	PCB 191	TOT	pg/L						<0.697				<0.677				<0.66
	PCB 192	TOT	pg/L						<0.697				<0.677				<0.66

Appendix B4, continued																
			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 1	4 2022	Oct. 2	7 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
	TOT	//	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
PCB 194		pg/L						1.02				1.97				1.94
PCB 195		pg/L						<0.697				0.722				0.814
PCB 196		pg/L						<0.697				1.11				1.31
PCB 197/200		pg/L						<0.697				<0.677				1.03
PCB 198/199		pg/L						1.26				2.26				2.84
		pg/L						2.24				3.16				4.77
PCB 20/28		pg/L						10.5				26.4				25.9
PCB 201		pg/L						<0.697				<0.677				<0.66
		pg/L						<0.697				1.33				1.17
		pg/L						1.05				2.17				1.6
		pg/L						<0.697				<0.677				<0.66
PCB 205		pg/L						<0.697				<0.677				<0.66
PCB 206		pg/L						1.29				1.78				2.36
PCB 207		pg/L						<0.738				<0.737				<0.66
		pg/L						1.28				1.03				1.68
PCB 209		pg/L						1.65				2.24				3.16
PCB 21/33	101	pg/L						5.06				13.2				12.8
PCB 22		pg/L						3.92				10.7				10.2
PCB 23	101	pg/L						<0.697				<0.677				<0.66
PCB 24	101	pg/L						<0.697				<0.677				<0.66
PCB 25		pg/L						<0.697				1.82				1.59
PCB 26/29	101	pg/L						1.61				3.77				3.65
PCB 27	101	pg/L						<0.697				1.21				0.858
		pg/L						3.24				4.02				8.32
PCB 31		pg/L						8.51				22.1				19.8
PCB 32	101	pg/L						2.4				5.29				3.69
PCB 34		pg/L						<0.697				<0.677				<0.66
PCB 35		pg/L						1.19				2.12				2.49
		pg/L						<0.697				<0.677				<0.66
PCB 37		pg/L						2.67				6.87				7.56
		pg/L						<0.697				<0.677				<0.66
		pg/L						6.04				6.29				6.06
PCB 40/41/71		pg/L						3.83				9.95				9.53
		pg/L						1.55				5.46				3.89
		pg/L						<0.697				1.25				1.02
PCB 44/47/65		pg/L						42.1				37.8				60.2
		pg/L						<0.697				1.51				1.07
		pg/L						1.13				4.38				3.51
PCB 49/69		pg/L						4.1				12.6				10.7
		pg/L						<3.26				<2.36				<1./
PCB 50/53		pg/L						1.12				2.8				2.05
PCB 52	101	pg/L						11./				28.3				24.7
PCB 54	101	pg/L						<0.697				<0.677				<0.66
PCB 55	101	pg/L						<1.04				<0.776				<0.66
PCB 56	101	pg/L						3.01				7.12				6.07
		pg/L						<1.03				<0./29				<0.66
PCB 58		pg/L						<1.07				<0.745				<0.66
PCB 59/62/75		pg/L						< 0.697				1.98				1.54
		pg/L						<2.69				4.3				3.28
		pg/L						1.58				4.19				4.28
PCB 61/70/74/76	TOT	pg/L						12.5				30.2				29.7

International Internat	Appendix B4, continued																
Parameter Parameter <t< th=""><th></th><th></th><th></th><th>Jan. 1</th><th>8 2022</th><th>Jan. 2</th><th>0 2022</th><th>Apr. 0</th><th>6 2022</th><th>Jul. 1</th><th>2 2022</th><th>Jul. 1</th><th>3 2022</th><th>Jul. 14</th><th>4 2022</th><th>Oct. 2</th><th>7 2022</th></t<>				Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 14	4 2022	Oct. 2	7 2022
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DCD 62	TOT	n/l	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						<0.982				0.971				0.797
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						Z.ZZ				0.90				12.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 60		pg/L						5.01				14.8				12.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pg/L						<0.892				<0.677				<0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						3.01				2.33				5.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						3.20				<2.07				1.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						<0.986				<0.692				<0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 73		pg/L						<0.697				<0.677				<0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						<1.23				1.47				1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						<1.12				<0.75				<0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						< 0.899				<0.677				<0.66
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			pg/L						5.48				11.6				11.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pg/L						<0.952				<0.682				<0.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCB 81		pg/L						<1.16				<0.801				< 0.66
PLB 83/9 DOT DQL DI DI <thdi< th=""> <thdi< th=""> <thdi< th=""> <t< td=""><td>PCB 82</td><td></td><td>pg/L</td><td></td><td></td><td></td><td></td><td></td><td>1.05</td><td></td><td></td><td></td><td>3.65</td><td></td><td></td><td></td><td>3.17</td></t<></thdi<></thdi<></thdi<>	PCB 82		pg/L						1.05				3.65				3.17
PLB 34 UI pgL ···· ··· ···· ···· ···· ···· ···· ···· ··· ···< ···< ···< ····< ····< ···· ···· ···· ··· ···· ···· <td>PCB 83/99</td> <td>101</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.12</td> <td></td> <td></td> <td></td> <td>20.2</td> <td></td> <td></td> <td></td> <td>15.9</td>	PCB 83/99	101	pg/L						7.12				20.2				15.9
PCB 89/19/11/2 TOT pgL	PCB 84	101	pg/L						2.98				7.99				7.33
PLCB 886/97/10(80/19/12/b) FOT pgL 1.78 24.3 22.6 PCB 889 101 pgL 20.6 20.6 20.6 20.6 20.6 20.6	PCB 85/116/117	TOT	pg/L						2.32				6.37				5.16
PCB 8891 IOI pg/L ··· ··· ··· I.P ···· ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< </td <td>PCB 86/87/97/108/119/125</td> <td>101</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.91</td> <td></td> <td></td> <td></td> <td>24.3</td> <td></td> <td></td> <td></td> <td>22.6</td>	PCB 86/87/97/108/119/125	101	pg/L						7.91				24.3				22.6
PCB 99 TOT pg/L cbB/P .	PCB 88/91	TOT	pg/L						1.79				4.31				3.59
PCB 9 TOT pgL	PCB 89	TOT	pg/L						< 0.697				< 0.87				<0.971
PCB 90/10/113 TOT pg/L 10.5 28.5 28.5	PCB 9	TOT	pg/L						<2.82				<2.08				<1.52
PCB 92 TOT pg/L 1.86 6.21 4.59 PCB 939(9100/102 TOT pg/L <td>PCB 90/101/113</td> <td>TOT</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.5</td> <td></td> <td></td> <td></td> <td>29.5</td> <td></td> <td></td> <td></td> <td>26.2</td>	PCB 90/101/113	TOT	pg/L						10.5				29.5				26.2
PCB 9395/96/00/102 TOT pg/L ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···< ···<	PCB 92	TOT	pg/L						1.86				6.21				4.59
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB 93/95/98/100/102	TOT	pg/L						9.07				24.1				24.2
PCB 96 TOT pg/L <	PCB 94	TOT	pg/L						<0.697				<0.901				<1.01
PCB174 TOT pg/L 1.85 3.79 46.3 PCB439 TOT pg/L <td>PCB 96</td> <td>TOT</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.697</td> <td></td> <td></td> <td></td> <td><0.677</td> <td></td> <td></td> <td></td> <td><0.66</td>	PCB 96	TOT	pg/L						<0.697				<0.677				<0.66
PCB39 TOT pg/L < < 6.22 112 112 111 Heptachloro Biphenyls TOT pg/L 43.7 6.22 111 Heptachloro Biphenyls TOT pg/L 41.3 112 85.2 Monachloro Biphenyls TOT pg/L 12 12.1 85.2 Monachloro Biphenyls TOT pg/L 12.6 1.03 1.03 1.03 1.03 1.03 1.03 1.0<	PCB174	TOT	pg/L						1.85				3.79				4.63
PCB45/51 TOT pg/L ··· ··· ··· ··· 4.73 ··· ··· 6.22 ··· ··· ··· 112 Dichlors Biphenyls TOT pg/L ··· ··· ··· 4.73 ··· ··· ··· 112 ··· ··· 111 Hexachlors Biphenyls TOT pg/L ··· ··· ··· 17 ··· ··· 119 ··· ··· ··· 36.5 Moncohlors Biphenyls TOT pg/L ··· ··· ··· 112 ··· ··· 119 ··· ··· 36.5 ··· ··· 36.7 Moncohlors Biphenyls TOT pg/L ··· ··· ··· 12 ··· ··· 112 ··· ··· 113 ··· ··· 103 ··· ··· 2.36 Octachlors Biphenyls TOT pg/L ··· ··· ··· 126 ··· ··· 103 ··· ··· 131 Terrachlors Biphenyls TOT pg/L <	PCB39	TOT	pg/L						<0.697				<0.677				<0.66
Dichloro Biphenyls TOT pg/L 43.7 112 111 Heptachloro Biphenyls TOT pg/L 17 113 111 112 112 111 112 112 112 112 112 12 12 12 12 12 12 12 12 12 12 12 131 Tetrachloro Biphenyls TOT pg/L 110	PCB45/51	TOT	pg/L						4.73				6.22				12.2
Heptachloro Biphenyls TOT pg/L 17 36.5 36.7 Hexachloro Biphenyls TOT pg/L 41.3 85.2 Monochloro Biphenyls TOT pg/L 41.3 12.1 85.2 Monochloro Biphenyls TOT pg/L 12 12.1 27.1 Nonachloro Biphenyls TOT pg/L 12.6 14.23 4.23 12.1 131 Petachloro Biphenyls TOT pg/L 94.3 173 131 Tetrachloro Biphenyls TOT pg/L 94.3 116.5	Dichloro Biphenyls	TOT	pg/L						43.7				112				111
Hexachbro biphenylsTOT pg/L 41.311985.2Monochbro BiphenylsTOT pg/L 1212.127.1Nonachbro BiphenylsTOT pg/L 12.127.1Nonachbro BiphenylsTOT pg/L 10.327.1Pentachbro BiphenylsTOT pg/L 12.64.223.11Tetrachoro BiphenylsTOT pg/L 94.312.1131Ticthoro BiphenylsTOT pg/L 94.3112118PCB Teq 3TOT pg/L 33.6116111PCB Teq 4TOT pg/L 1.020.94810.60.9010.1230.0465 <tr< td=""><td>Heptachloro Biphenyls</td><td>TOT</td><td>pg/L</td><td></td><td></td><td></td><td></td><td></td><td>17</td><td></td><td></td><td></td><td>36.5</td><td></td><td></td><td></td><td>36.7</td></tr<>	Heptachloro Biphenyls	TOT	pg/L						17				36.5				36.7
Monochoro Biphenyls TOT pg/L 12 12.1 27.1 Nonachloro Biphenyls TOT pg/L <-999	Hexachloro biphenyls	TOT	pg/L						41.3				119				85.2
Nonachloro Biphenyls TOT pg/L e^{-1} <	Monochloro Biphenyls	TOT	pg/L						12				12.1				27.1
Octachloro Biphenyls TOT pg/L 1.26 4.22 3.11 Pentachloro Biphenyls TOT pg/L 30.3 173 131 Tetrachloro Biphenyls TOT pg/L 30.3 173 131 Tetrachloro Biphenyls TOT pg/L 30.3 116 136 Trichloro Biphenyls TOT pg/L 33.6 116 111 PCB Teq 3 TOT pg/L 1.02 0.948 1.03 0.00465 0.123 0.00442 PCB Teq 4 TOT pg/L 1.02 0.948	Nonachloro Biphenyls	TOT	pg/L						<-999				1.03				2.36
Pentachloro Biphenyls TOT pg/L 30.3 173 131 Tetrachloro Biphenyls TOT pg/L 94.3 121 186 Trichloro Biphenyls TOT pg/L 94.3 116 186 Trichloro Biphenyls TOT pg/L 91.3 116 111 PCB Teq 3 TOT pg/L 1.02 0.948 0.193 0.00465 0.123 0.00442 PCB Teq 4 TOT pg/L 1.02 0.948 0.193 0.00465 0.123 0.00442 PCB Total TOT pg/L <	Octachloro Biphenyls	TOT	pg/L						1.26				4.22				3.11
Tetrachloro Biphenyls TOT pg/L 94.3 121 186 Trichloro Biphenyls TOT pg/L 33.6 116 111 PCB Teq 3 TOT pg/L 0.156 0.0926 0.166 0.123 0.0442 PCB Teq 4 TOT pg/L 1.02 0.948 1.06 0.901 0.938 0.92 PCB Teq 4 TOT pg/L 1.02 0.948 1.06 0.901 0.924 0.533 0.928 0.924 1.2.3.4,6.7.8-HPCDF TOT pg/L 7.71 0.901 1.57 0.533 </td <td>Pentachloro Biphenyls</td> <td>TOT</td> <td>pg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30.3</td> <td></td> <td></td> <td></td> <td>173</td> <td></td> <td></td> <td></td> <td>131</td>	Pentachloro Biphenyls	TOT	pg/L						30.3				173				131
Trichloro Biphenyls TOT pg/L 33.6 116 111 PCB Teq 3 TOT pg/L 0.156 0.00926 0.193 0.00465 0.123 0.00442 PCB Teq 4 TOT pg/L 1.02 0.948 1.06 0.901 0.928 PCBs Total TOT pg/L 1.02 0.948 1.06 0.901 0.123 0.00442 PCBs Total TOT pg/L 1.02 0.948 1.06 0.901 697 0.123 0.0442 1,2,3,4,6,7,8-HPCDF TOT pg/L 7.71 0.901 9.24 <0.533	Tetrachloro Biphenyls	TOT	pg/L						94.3				121				186
PCB Teq 3 TOT pg/L 0.156 0.00926 0.193 0.00465 0.123 0.00442 PCB Teq 4 TOT pg/L 1.02 0.948 1.06 0.901 0.998 0.92 PCBs Total TOT pg/L 1.02 0.948 1.06 0.901 0.998 0.92 PCBs Total TOT pg/L 273 697 696 1.2,3,4,6,7,8-HPCDF TOT pg/L 1.7 1.06 1.2,3,4,6,7,8-HPCDF TOT pg/L 1.57 <0.533 1.72 <0.544 1.2,3,4,7,8-HCDF TOT pg/L < < < < < < < < < < <	Trichloro Biphenyls	TOT	pg/L						33.6				116				111
PCB Teq 4 TOT pg/L 1.02 0.948 1.06 0.901 0.998 0.92 PCBs Total TOT pg/L 273 697 696 1,2,3,4,6,7,8-HPCDD TOT pg/L 7.71 0.901 9.24 <0.533 697 1,2,3,4,6,7,8-HPCDF TOT pg/L 7.71 0.901 9.24 <0.533 1.06 1,2,3,4,6,7,8-HPCDF TOT pg/L 1.43 <0.557 1.57 <0.533 <0.544 1,2,3,4,7,8-HXCDD TOT pg/L < <0.526 <0.557 <0.533 <0.533 <0.544 1,2,3,4,7,8-HXCDF TOT pg/L <0.526 <0.	PCB Teq 3	TOT	pg/L					0.156	0.00926			0.193	0.00465			0.123	0.00442
PCBs Total TOT pg/L 273 697 696 1,2,3,4,6,7,8-HPCDD TOT pg/L 7.71 0.901 9.24 <0.533	PCB Teq 4	TOT	pg/L					1.02	0.948			1.06	0.901			0.998	0.92
1,2,3,4,6,7,8-HPCDD TOT pg/L 7.71 0.901 9.24 <0.533 11.7 1.06 1,2,3,4,6,7,8-HPCDF TOT pg/L 1.43 <0.557 1.57 <0.533 1.72 <0.544 1,2,3,4,7,8,9-HPCDF TOT pg/L 0.526 <0.557 <0.533 < <0.519 <0.544 1,2,3,4,7,8-HXCDD TOT pg/L <0.526 <0.557 <0.533 <0.533 <0.519 <0.544 1,2,3,4,7,8-HXCDF TOT pg/L <0.526 <0.557 <0.533 <0.533 <0.519 <0.544 1,2,3,6,7,8-HXCDF TOT pg/L <0.526 <0.557 <0.533 <0.533 <0.519 <0.544 1,2,3	PCBs Total	TOT	pg/L						273				697				696
1,2,3,4,6,7,8-HPCDFTOTpg/L1.43<0.5571.57<0.5331.72<0.544 $1,2,3,4,7,8,9$ -HPCDFTOTpg/L<0.526	1,2,3,4,6,7,8-HPCDD	TOT	pg/L					7.71	0.901			9.24	<0.533			11.7	1.06
1,2,3,4,7,8,9-HPCDF TOT pg/L <-0.526 <-0.557 <-0.533 <-0.533 < <-0.519 <0.544 1,2,3,4,7,8-HXCDD TOT pg/L <0.526	1,2,3,4,6,7,8-HPCDF	TOT	pg/L					1.43	<0.557			1.57	<0.533			1.72	<0.544
1,2,3,4,7,8-HXCDD TOT pg/L <0.526 <0.557 <0.533 < <0.519 <0.544 1,2,3,4,7,8-HXCDF TOT pg/L <0.526	1,2,3,4,7,8,9-HPCDF	TOT	pg/L					<0.526	<0.557			< 0.533	<0.533			<0.519	<0.544
1,2,3,4,7,8-HXCDF TOT pg/L <0.526 <0.557 <0.533 <0.519 <0.544 1,2,3,6,7,8-HXCDD TOT pg/L <0.526	1,2,3,4,7,8-HXCDD	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
1,2,3,6,7,8-HXCDD TOT pg/L <-0.526 <0.557 0.948 <0.533 0.79 <0.544 1,2,3,6,7,8-HXCDF TOT pg/L <0.526	1,2,3,4,7,8-HXCDF	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
1,2,3,6,7,8-HXCDF TOT pg/L < 0.526 < 0.557 < 0.533 < 0.519 < 0.544 1,2,3,7,8,9-HXCDD TOT pg/L < 0.526	1,2,3,6,7,8-HXCDD	TOT	pg/L					< 0.526	< 0.557			0.948	< 0.533			0.79	< 0.544
1,2,3,7,8,9-HXCDD TOT pg/L <0.526 <0.557 <0.533 <0.533 <0.519 <0.544	1,2,3,6,7,8-HXCDF	TOT	pg/L					< 0.526	< 0.557			< 0.533	< 0.533			< 0.519	< 0.544
	1,2,3,7,8,9-HXCDD	TOT	pg/L					< 0.526	< 0.557			< 0.533	< 0.533			< 0.519	<0.544
1,2,3,7,8,9-HXCDF TOT pg/L 0.714 0.646 < <0.533 < < <0.519 <-0.544	1,2,3,7,8,9-HXCDF	TOT	pg/L					0.714	0.646			<0.533	<0.533			<0.519	<0.544

Appendix B4, continued																
			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1:	3 2022	Jul. 1	4 2022	Oct. 2	7 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
1,2,3,7,8-PECDD	TOT	pg/L					< 0.526	<0.557			<0.533	< 0.533			<0.519	<0.544
1,2,3,7,8-PECDF	TOT	pg/L					< 0.526	<0.557			<0.533	< 0.533			0.707	<0.544
2,3,4,6,7,8-HXCDF	TOT	pg/L					< 0.526	< 0.557			< 0.533	< 0.533			< 0.519	< 0.544
2,3,4,7,8-PECDF	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
2,3,7,8-TCDD	TOT	pg/L					< 0.526	<0.557			<0.533	<0.533			<0.519	<0.544
2,3,7,8-TCDF	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
HEPTA-DIOXINS	TOT	pg/L					14.4	0.901			16.7	<0.533			20.4	0.873
Hepta-Furans	TOT	pg/L					1.42	<0.557			1.41	<0.533			1.38	<0.544
HEXA-DIOXINS	TOT	pg/L					1.34	<0.557			0.948	<0.533			3.19	<0.544
HEXA-FURANS	TOT	pg/L					0.714	<0.557			<0.533	<0.533			0.582	<0.544
OCDD	TOT	pg/L					70.5	2.49			62.6	3.05			58.1	4.39
OCDF	TOT	pg/L					2.52	<0.557			<1.24	<0.554			2.4	0.732
Penta-Dioxins	TOT	pg/L					<0.526	<0.557			0.835	<0.533			1.18	<0.544
Penta-Furans	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
Tetra-Dioxins	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
Tetra-Furans	TOT	pg/L					<0.526	<0.557			<0.533	<0.533			<0.519	<0.544
2,4-DDD	TOT	ng/L						2.27				5.67				4.94
2,4-DDE	TOT	ng/L						<0.0441				<0.214				<0.0414
2,4-DDT	TOT	ng/L						<0.214				<0.214				<0.0414
4,4-DDD	TOT	ng/L						<0.2				<0.214				<0.0414
4,4-DDE	TOT	ng/L						0.156				<0.214				0.058
4,4-DDT	TOT	ng/L						<0.254				<0.214				<0.0425
ABHC	TOT	ng/L						<0.0441				<0.214				<0.0414
Aldrin	TOT	ng/L						<0.0441				<0.214				<0.0414
Alpha Chlordane	TOT	ng/L						<0.0441				<0.214				<0.0414
Alpha-Endosulfan	TOT	ng/L						0.127				< 0.534				<0.104
Beta-Endosulfan	TOT	ng/L						0.575				0.794				0.373
Beta-Hch Or Beta-Bhc	TOT	ng/L						0.103				<0.214				0.069
Bis(2-Chloroethoxy)Methane	TOT	µg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Bis(2-Chloroethyl)Ether	TOT	μg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Bis(2-Chloroisopropyl)Ether	TOT	µg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Cis-Nonachlor	TOT	ng/L						<0.0441				<0.214				<0.0414
Dieldrin	TOT	ng/L						0.159				< 0.534				0.108
Endosulfan Sulfate	TOT	ng/L						<0.11				< 0.534				<0.104
Endrin	TOT	ng/L						<0.11				< 0.534				<0.104
Endrin Aldehyde	TOT	ng/L						<0.11				< 0.534				<0.104
HCH, Gamma	TOT	ng/L						0.127				<0.214				0.068
Heptachlor	TOT	ng/L						<0.0441				<0.214				<0.0414
Heptachlor Epoxide	TOT	ng/L						<0.11				<0.534				<0.104
Hexachlorobenzene	TOT	ng/L						0.041				<0.107				0.035
Methoxyclor	TOT	ng/L						<0.376				<1.07				<0.207
Mirex	TOT	ng/L						<0.0441				<0.214				<0.0414
Octachlorostyrene	TOT	ng/L						<0.0441				<0.214				0.004
Oxychlordane	TOT	ng/L						<0.0441				<0.214				< 0.0923
3:3 FTCA	TOT	ng/L					<3.16	<2.94							<12	<4.8
4:2 FTS	TOT	ng/L					<3.16	<2.94							<12	<4.8
5:3 FTCA	TOT	ng/L					<19.7	<18.4							<75	<30
6:2 FTS	TOT	ng/L					<2.84	<2.65							<10.8	<4.33
7:3 FTCA	TOT	ng/L					<19.7	<18.4							<75	<30
8:2 FTS	TOT	ng/L					<2.68	<2.5							<10.2	<4.08
ADONA	TOT	ng/L					<3.16	<2.94							<12	<4.8
	-	<u>.</u>					-	-								

Appendix B4, continued																
			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 1	4 2022	Oct. 2	27 2022
Parameter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
HFPO-DA	TOT	ng/L					<3.16	<2.94							<12	<4.8
MeFOSAA	TOT	ng/L					<0.789	<0.734							<3	1.8
N-EtFOSA		ng/L					<2.21	<2.06							<8.4	<3.36
N-EtFOSAA		ng/L					<0.789	<0.734							<3	<1.2
N-EtFOSE		ng/L					<7.89	<7.34							<30	<12
NFDHA		ng/L					<1.58	<1.4/							<6	<2.4
N-MEFOSA		ng/L					<0.789	<0.734							<3	<1.2
N-MEFUSE		ng/L					<7.89	<7.34							<30	<12
PFBS		ng/L					3.72	4.22			<3.12	1.71			<3	1.2
		ng/L					<0.789	0.983			<3.12	1.2			<3	1.55
PFD0A		ng/L					<0.631	<0.587			<2.5	<0.302			<2.4	<0.96
PFD05		ng/L					<0.789	<0.734							<3	<1.2
		ng/L					0.796	<0.734							<3	<1.2
		ng/L					<0.789	<0.734							<3	<1.2
		ng/L					2.00	2.24			3.34	1.04			< 3	2.05
РЕНул		ng/L					0.042	<0.734			0.7	12.5			<3	<1.2
PFHXA		ng/L					0.24	7.3			0. <i>1</i>	12.0			4.21	1.93
DEMBA	TOT	ng/L					4.00	4.41			0.22	3.11			<3	1.00
		ng/L					<0.769	<0.734							<	<1.2
	TOT						<1.50	0.83				0.552			<0	<2.4
DENS	TOT	ng/L					<0.789	-0.734			<3.12	0.552			<3	<1.2
PFOA	тот	ng/L					4.07	5.47			3.83	4.05			<3	4.2
PEOS	тот	ng/L					7.66	J.47			11 7	4.00			8.44	4.2
PEOSA	тот	ng/L					<0.789	<0 734			<3.12	<0.378			<3	<12
PFPeA	TOT	ng/L					9.54	10.2			14.9	12.2			<6	11
PFPeS	тот	ng/L					<0.793	<0.738							<3.02	<1.21
PFTeDA	TOT	ng/L					<0.789	<0.734							<3	<1.2
PFTrDA	TOT	na/L					<0.789	< 0.734							<3	<1.2
Bis(2-Ethylbexyl)Phthalate	TOT	ug/l					<5	<5			<5	<5			<5	<5
Butylbenzyl Phthalate	TOT	<u>µg; _</u> ua/L					<2.5	<2.5			<2.5	<2.5			<2.5	<2.5
Diethyl Phthalate	TOT	ua/L					0.33	< 0.25			1	<0.25			0.94	< 0.25
Dimethyl Phthalate	TOT	ua/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
Di-N-Butyl Phthalate	TOT	ug/L					<2.5	<2.5			<2.5	<2.5			<2.5	<2.5
Di-N-Octyl Phthalate	TOT	µg/L					<0.25	<0.25			<0.25	<0.25			<0.25	<0.25
2-Hydroxy-Ibuprofen	TOT	ng/L					23700	3820			28700	1440			50000	-999
Acetaminophen	TOT	ng/L									250000	7.21			96000	649
Azithromycin	TOT	ng/L									321	280			228	203
Bisphenol A	TOT	ng/L					119	<9.67			146	99.5			217	199
Caffeine	TOT	ng/L									168000	152			134000	148
Carbadox	TOT	ng/L									5.46	<3.81			47.5	13.6
Carbamazepine	TOT	ng/L									778	510			413	566
Cefotaxime	TOT	ng/L									<11.5	<5.67			-999	-999
Ciprofloxacin	TOT	ng/L									508	251			366	194
Clarithromycin	TOT	ng/L									129	138			170	122
Clinafloxacin	TOT	ng/L									<2.13	<1.9			<7.69	<2.86
Cloxacillin	TOT	ng/L									<2.88	<2.86			<11.5	<2.81
Dehydronifedipine	TOT	ng/L									2.37	17.4			5.78	13.8
Digoxigenin	TOT	ng/L									<1.94	<1.45			<7.73	<3.49
Digoxin	TOT	ng/L									<7.56	<5.72			<23.1	<7.22
Diltiazem	TOT	ng/L									810	490			884	361

			Jan. 1	8 2022	Jan. 2	0 2022	Apr. 0	6 2022	Jul. 1	2 2022	Jul. 1	3 2022	Jul. 14	4 2022	Oct. 2	7 2022
Peremeter			Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
Parameter			Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Q+	Q+	Quarterly	Quarterly	Quarterly	Quarterly
Diphenhydramine	TOT	ng/L									1720	604			1310	579
Enrofloxacin	TOT	ng/L									<0.576	<0.572			<2.31	<0.561
Erythromycin-H2O	TOT	ng/L									3.74	5.7			26.2	81.6
Flumequine	TOT	ng/L									<0.288	<0.286			<1.15	<0.281
Fluoxetine	TOT	ng/L									62.7	44			41.4	32.7
Furosemide	TOT	ng/L					1480	488			1360	297			1130	219
Gemfibrozil	TOT	ng/L					24.5	14.4			79.8	63.5			17.8	17.9
Glipizide	TOT	ng/L					<2.53	<0.741			<3.84	<2.29			<3.08	<0.748
Glyburide	TOT	ng/L					<2.53	1.69			<3.84	2.95			<3.08	3.87
Hydrochlorothiazide	TOT	ng/L					1670	1210			2380	2640			2820	2300
Ibuprofen	TOT	ng/L					10100	1240			18200	296			21100	298
Lincomycin	TOT	ng/L									0.913	0.991			<2.31	0.662
Lomefloxacin	TOT	ng/L									<0.576	<0.572			<2.31	<0.561
Miconazole	TOT	ng/L									8.98	0.617			7.34	1.47
Naproxen	TOT	ng/L					6880	441			11700	324			10700	717
Norfloxacin	TOT	ng/L									<4.57	<1.9			<7.69	<3.11
Norgestimate	TOT	ng/L									<1.44	<1.43			<5.77	<1.4
Ofloxacin	TOT	ng/L									72.4	19.9			19.3	28.8
Ormetoprim	TOT	ng/L									<0.144	<0.143			<0.664	<0.14
Oxacillin	TOT	ng/L									<1.44	<1.43			<5.77	<1.4
Oxolinic Acid	TOT	ng/L									<0.576	<0.572			<2.31	<0.561
Penicillin G	TOT	ng/L									<2.88	<2.86			<11.5	<2.81
Penicillin V	TOT	ng/L									<1.44	<1.43			<5.77	<1.4
Roxithromycin	TOT	ng/L									<0.705	<0.153			1.79	1.01
Sarafloxacin	TOT	ng/L									<2.88	<2.86			<11.5	<2.81
Sulfachloropyridazine	TOT	ng/L									<0.576	<0.572			<2.31	<1.47
Sulfadiazine	TOT	ng/L									<0.576	<0.572			3.79	<0.561
Sulfadimethoxine	TOT	ng/L									<0.288	<0.286			<1.15	<0.401
Sulfamerazine	TOT	ng/L									<0.576	<0.572			<2.31	<1.07
Sulfamethazine	TOT	ng/L									<0.746	<0.572			<2.31	< 0.904
Sulfamethizole	TOT	ng/L									<1.23	<0.572			<41	<19.3
Sulfamethoxazole	TOT	ng/L									1650	307			2750	419
Sulfanilamide	TOT	ng/L									71.7	101			-999	-999
Sulfathiazole	TOT	ng/L									<1.44	<1.43			<19.2	<4.68
Thiabendazole	TOT	ng/L									41.7	29.2			27.2	23.4
Triclocarban	TOT	ng/L					1.95	<0.371			2.94	<1.14			<1.54	1.68
Triclosan	TOT	ng/L					74	19.4			68.9	18.7			37.6	15.8
Trimethoprim	TOT	ng/L									341	446			407	358
Tylosin	TOT	ng/L									24.7	5.7			3.97	4.41
Virginiamycin	TOT	ng/L									<1.76	<0.572			-999	-999
Warfarin	TOT	ng/L					4.01	3.83			7.14	4.78			5.15	5.47

Notes:

--- data not available

APPENDIX C

Surface Water / IDZ Monitoring

- Appendix C1 SPTP Surface Water Stations
- Appendix C2 SPTP IDZ Sites Extended Sampling Results 2022 (1st day of sampling)
- Appendix C3 Surface Water IDZ Nutrient Monitoring Results 2022

		Latitude	Longitude
Surface Water Stations	Outfall	48°37.3978	-123°23.1511'
	100N	48°37.4302	-123°23.1511'
	100S	48°37.3654	-123°23.1506'
	200NE	48°37.4440	-123°23.8221'
	200NW	48°37.4433	-123°23.2202'
	200SE	48°37.3522	-123°23.8160'
	200SW	48°37.3522	-123°23.2195'
	400E	48°37.3983	-123°22.5556'
	400N	48°37.5274	-123°23.1518'
	400S	48°37.2682	-123°23.1500'
	400W	48°37.3972	-123°23.3462'
	800N	48°38.5701	-123°23.1529'
	800S	48°37.1391	-123°23.1488'
	800W	48°37.3965	-123°23.5417'
	Reference 2	48°38.5496	-123°19.1139'
IDZ Stations	SP02	48°37.7179	-123°23.1816'
	SP03	48°37.6930	-123°23.1431'
	SP04	48°37.6576	-123°23.1365'
	SP05	48°37.6272	-123°23.1647'
	SP06	48°37.6137	-123°23.2149'
	SP07	48°37.6052	-123°23.2682'
	SP08	48°37.6088	-123°23.3218'
	SP09	48°37.6337	-123°23.3602'
	SP10	48°37.6691	-123°23.3668'
	SP11	48°37.6995	-123°23.3386'
	SP12	48°37.7130	-123°23.2884'
	SP13	48°37.7215	-123°23.2351'

Appendix C1 SPTP Surface Water Stations

Appendix C2 SPTP IDZ Sites Extended Sampling Results (one sampling day each season) 2022

		Aluminu	ım (mg/L)	Antimo	ny (mg/L)	Arseni	c (mg/L)	Barium	n (mg/L)	Berylliu	m (mg/L)	Boron	(mg/L)	Cadmiu	m (mg/L)	Chromiu	ım (mg/L)	Cobalt	(mg/L)	Copper	⁻ (mg/L)	Iron	(mg/L)	Lead	(mg/L)	Magnesi	um (mg/L)
		Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer
WQ Guide	elines					0.0125	mg/L *+#					1.2 ו	mg/L	0.00012 m	ng/L (max) *					0.002 (mean of 5 0.14 mg/	: mg/L samples) or L (max) *						
Station 1	Тор	0.0278	0.029	<0.001	<0.001	0.0015	0.00123	0.0099	0.0092	< 0.0005	<0.0005	4.01	3.86	0.000077	0.000044	<0.0005	<0.0005	<0.00005	<0.00005	<0.0005	<0.0005	0.023	0.02	<0.00005	<0.00005	1,100	1,030
	Middle	0.0395	0.0181	<0.001	<0.001	0.00159	0.00235	0.0102	0.0092	< 0.0005	<0.0005	4.18	3.69	0.000074	0.00008	<0.0005	0.00149	<0.00005	0.000123	<0.0005	0.0006	0.032	0.014	<0.00005	0.000071	1,160	1,080
	Bottom	0.0445	0.0207	<0.001	<0.001	0.00155	0.00242	0.0102	0.0093	< 0.0005	<0.0005	4.2	3.75	0.000077	0.000072	<0.0005	0.00132	<0.00005	0.000097	<0.0005	<0.0005	0.045	0.017	<0.00005	0.000052	1,140	1,090
Station 2	Тор	0.0355	0.0199	<0.001	<0.001	0.00149	0.00234	0.01	0.0092	< 0.0005	<0.0005	4.09	3.64	0.000088	0.000047	<0.0005	0.00114	<0.00005	0.000104	<0.0005	<0.0005	0.035	0.011	<0.00005	0.000085	1,130	1,070
	Middle	0.0366	0.0158	<0.001	<0.001	0.00159	0.00244	0.0102	0.009	< 0.0005	<0.0005	4.19	3.82	0.000077	0.000045	<0.0005	0.00177	<0.00005	0.00014	<0.0005	<0.0005	0.035	0.015	<0.00005	<0.00005	1,190	1,090
	Bottom	0.0428	0.0228	<0.001	<0.001	0.00157	0.0025	0.0097	0.0092	< 0.0005	< 0.0005	3.99	3.95	0.000084	0.000088	<0.0005	0.00153	<0.00005	0.000115	<0.0005	<0.0005	0.044	0.014	<0.00005	0.000077	1,150	1,130
Station 3	Тор	0.0349	0.029	<0.001	<0.001	0.00155	0.00244	0.0099	0.0097	< 0.0005	<0.0005	4.06	3.73	0.000077	0.000053	<0.0005	0.00151	<0.00005	0.000102	<0.0005	<0.0005	0.027	0.013	<0.00005	<0.00005	1,170	1,080
	Middle	0.0341	0.0221	<0.001	<0.001	0.0016	0.00264	0.0101	0.0097	< 0.0005	<0.0005	4.14	3.83	0.00008	0.000075	0.0005	0.00173	<0.00005	0.000105	<0.0005	<0.0005	0.035	0.014	<0.00005	0.000066	1,180	1,120
	Bottom	0.0408	0.0213	<0.001	<0.001	0.00153	0.00249	0.0099	0.0093	< 0.0005	<0.0005	4.17	3.95	0.000084	0.00006	<0.0005	0.00109	<0.00005	0.000107	<0.0005	<0.0005	0.044	0.015	<0.00005	<0.00005	1,160	1,110
Station 4	Тор	0.0292	0.0178	<0.001	<0.001	0.00154	0.00237	0.0096	0.0092	<0.0005	<0.0005	4.16	3.83	0.000072	0.000037	<0.0005	0.00151	<0.00005	0.000097	<0.0005	<0.0005	0.03	0.01	<0.00005	<0.00005	1,140	1,050
	Middle	0.0415	0.018	<0.001	<0.001	0.00158	0.00232	0.0097	0.0095	< 0.0005	<0.0005	4.47	3.89	0.00008	0.000051	<0.0005	0.0016	<0.00005	0.000113	<0.0005	<0.0005	0.032	0.029	<0.00005	<0.00005	1,110	1,100
	Bottom	0.0339	0.0206	<0.001	<0.001	0.00165	0.0025	0.0096	0.009	< 0.0005	< 0.0005	4.43	3.97	0.000073	0.000043	<0.0005	0.00161	<0.00005	0.000128	<0.0005	<0.0005	0.036	0.018	<0.00005	<0.00005	1,110	1,080
Reference 2	Тор	0.0242	0.0276	<0.001	<0.001	0.00156	0.00228	0.0096	0.0092	<0.0005	<0.0005	4.49	3.76	0.000073	0.000075	0.00724	0.00285	0.000052	0.000088	<0.0005	0.00075	0.067	0.024	<0.00005	<0.00005	1,100	1,020
	Middle	0.033	0.0154	<0.001	<0.001	0.00161	0.00225	0.0094	0.0085	<0.0005	<0.0005	4.67	3.72	0.000073	0.000067	<0.0005	0.00362	<0.00005	0.000101	<0.0005	0.00071	0.03	0.026	<0.00005	0.000054	1,150	1,030
	Bottom	0.0317	0.0205	<0.001	<0.001	0.00156	0.00233	0.01	0.0089	<0.0005	<0.0005	4.49	3.8	0.000074	0.000061	<0.0005	0.00112	< 0.00005	0.000088	<0.0005	<0.0005	0.032	0.015	<0.00005	0.000083	1,130	1,060
Average	Тор	0.0319	0.0239	<0.001	<0.001	0.00152	0.00210	0.0099	0.0093	< 0.0005	<0.0005	4.08	3.77	0.00008	0.00005	<0.0005	0.00110	<0.00005	< 0.00005	<0.0005	0.0003	0.029	0.014	<0.00005	0.00004	1,135	1,058
IDZ	Middle	0.0379	0.0185	<0.001	<0.001	0.00159	0.00244	0.0101	0.0094	< 0.0005	<0.0005	4.25	3.81	0.00008	0.00006	<0.0005	0.00165	<0.00005	<0.00005	<0.0005	0.0008	0.034	0.018	< 0.00005	0.00005	1,160	1,098
Stations	Bottom	0.0405	0.0214	<0.001	<0.001	0.00158	0.00248	0.0099	0.0092	< 0.0005	<0.0005	4.20	3.91	0.00008	0.00007	<0.0005	0.00139	<0.00005	<0.00005	0.0018	<0.0005	0.042	0.016	< 0.00005	0.00004	1,140	1,103

Notes: Shaded cells indicate exceedance to BC WQG (see Appendix C2) * = BC Approved Water Quality Guideline + = BC Working Water Quality Guideline # = CCME Water Quality Guideline for the Protection of Aquatic Life

		Mangane	ese (mg/L)	Mercur	y (mg/L)	Molybdei	num (mg/L)	Nickel	(mg/L)	Potassiu	um (mg/L)	Seleniu	m (mg/L)	Silver	(mg/L)	Strontiu	ım (mg/L)	Tin ((mg/L)	Titaniu	m (mg/L)	Uraniun	n (mg/L)	Zinc	(mg/L)
		Winter	summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	Summer
WQ Guid	lelines							0.0071	mg/L *			0.002	mg/L *	0.001 (mean of or 0.003 m	5 mg/L 5 samples) ng/L (max) *									0.01 mg/L (mea	n of 5 samples) *
Station 1	Тор	0.0026	0.0022	<0.0019	<0.0019	0.00949	0.00882	<0.0005	<0.0002	446	310	<0.0005	<0.0005	<0.0001	<0.0001	6.74	6.43	<0.001	<0.001	<0.005	<0.005	0.00249	0.00245	< 0.003	<0.003
	Middle	0.0029	0.0026	<0.0019	<0.0019	0.00977	0.00897	<0.0005	0.00269	470	328	<0.0005	<0.0005	<0.0001	<0.0001	6.87	5.99	<0.001	<0.001	<0.005	<0.005	0.0026	0.00255	<0.003	< 0.003
	Bottom	0.0031	0.0026	<0.0019	<0.0019	0.00986	0.00867	<0.0005	<0.0002	470	332	< 0.0005	<0.0005	<0.0001	<0.0001	6.92	6.07	<0.001	<0.001	< 0.005	< 0.005	0.00269	0.00268	<0.003	<0.003
Station 2	Тор	0.0029	0.0028	<0.0019	<0.0019	0.00971	0.00864	<0.0005	<0.0002	465	326	<0.0005	<0.0005	<0.0001	<0.0001	6.78	5.82	<0.001	<0.001	<0.005	<0.005	0.0026	0.00248	< 0.003	0.004
	Middle	0.0031	0.0031	<0.0019	<0.0019	0.0101	0.00857	<0.0005	<0.0002	471	326	<0.0005	<0.0005	<0.0001	<0.0001	7.11	6.05	<0.001	0.002	<0.005	< 0.005	0.00265	0.00263	<0.003	<0.003
	Bottom	0.0030	0.0030	<0.0019	<0.0019	0.00942	0.00918	<0.0005	<0.0002	462	345	<0.0005	<0.0005	<0.0001	<0.0001	6.73	6.17	<0.001	<0.001	< 0.005	< 0.005	0.00253	0.00273	<0.003	0.003
Station 3	Тор	0.0027	0.0029	<0.0019	<0.0019	0.00957	0.00857	<0.0005	<0.0002	470	324	<0.0005	<0.0005	<0.0001	<0.0001	6.79	5.92	<0.001	<0.001	<0.005	<0.005	0.00254	0.00261	0.0052	< 0.003
	Middle	0.0029	0.0031	<0.0019	<0.0019	0.00966	0.0091	<0.0005	<0.0002	468	335	<0.0005	<0.0005	<0.0001	<0.0001	6.89	5.98	<0.001	<0.001	< 0.005	<0.005	0.00263	0.00269	<0.003	< 0.003
	Bottom	0.0030	0.0027	<0.0019	<0.0019	0.00994	0.0092	<0.0005	0.00029	459	331	<0.0005	< 0.0005	<0.0001	<0.0001	7.01	6.05	<0.001	<0.001	< 0.005	< 0.005	0.00265	0.00268	<0.003	< 0.003
Station 4	Тор	0.0027	0.0028	<0.0019	<0.0019	0.00936	0.0084	<0.0005	0.00039	444	319	<0.0005	<0.0005	<0.0001	<0.0001	6.72	5.72	<0.001	<0.001	<0.005	<0.005	0.00252	0.00256	< 0.003	< 0.003
	Middle	0.0029	0.0028	<0.0019	<0.0019	0.00968	0.00853	<0.0005	<0.0002	441	328	<0.0005	<0.0005	<0.0001	<0.0001	6.79	5.98	<0.001	<0.001	<0.005	<0.005	0.00262	0.00259	< 0.003	< 0.003
	Bottom	0.0029	0.0029	<0.0019	<0.0019	0.00976	0.0087	<0.0005	< 0.0002	450	329	<0.0005	<0.0005	<0.0001	<0.0001	6.89	6	<0.001	<0.001	< 0.005	<0.005	0.00255	0.00264	0.008	< 0.003
Deference	Тор	0.0033	0.0029	<0.0019	<0.0019	0.01	0.0083	0.00061	0.00055	445	310	<0.0005	<0.0005	<0.0001	<0.0001	7.06	5.6	<0.001	<0.001	<0.005	<0.005	0.00262	0.00249	<0.003	< 0.003
2	Middle	0.0025	0.0026	<0.0019	<0.0019	0.00976	0.00828	<0.0005	0.00056	458	300	<0.0005	<0.0005	<0.0001	<0.0001	6.88	5.54	<0.001	<0.001	< 0.005	<0.005	0.00254	0.0025	0.004	< 0.003
2	Bottom	0.0029	0.0026	<0.0019	<0.0019	0.00996	0.0091	<0.0005	<0.0002	458	318	<0.0005	<0.0005	<0.0001	<0.0001	7.03	5.88	<0.001	<0.001	<0.005	<0.005	0.00267	0.00257	< 0.003	0.0052
Average	Тор	0.0027	0.0027	<0.0019	<0.0019	0.0095	0.0086	<0.0005	<0.0005	456	320	< 0.0005	< 0.0005	<0.0001	<0.0001	6.76	5.97	<0.001	<0.001	< 0.005	< 0.005	0.00254	0.00253	<0.003	<0.003
IDZ	Middle	0.0030	0.0029	<0.0019	<0.0019	0.0098	0.0088	<0.0005	0.00015	463	329	< 0.0005	< 0.0005	<0.0001	<0.0001	6.92	6.00	<0.001	<0.001	< 0.005	< 0.005	0.00263	0.00262	<0.003	< 0.003
Stations	Bottom	0.0030	0.0028	0.0019	<0.0019	0.0097	0.0089	<0.0005	0.00048	460	334	<0.0005	<0.0005	<0.0001	<0.0001	6.89	6.07	<0.001	<0.001	<0.005	<0.005	0.00261	0.00268	0.0031	<0.003

Notes: Shaded cells indicate exceedance to BC WQG (see Appendix C2) * = BC Approved Water Quality Guideline + = BC Working Water Quality Guideline # = CCME Water Quality Guideline for the Protection of Aquatic Life

			NH3 n	ng/L – 2022			
	BC Approv	ved WQ	G = 23-3	3 mg/L N (av	verage over {	5 samples)	
		or	3.4-5.0	ng/L N (max	(imum)		
				Winte	er		Average
	Тор	0.042	0.071	0.084	0.062	0.049	0.062
Reference	Middle	0.043	0.065	0.076	0.060	0.060	0.061
	Bottom	0.039	0.062	0.066	0.057	0.062	0.057
	Тор	0.046	0.061	0.069	0.059	0.058	0.059
Station 1	Middle	0.037	0.054	0.069	0.061	0.053	0.055
	Bottom	0.036	0.064	0.080	0.053	0.048	0.056
	Тор	0.038	0.065	0.071	0.055	0.057	0.057
Station 2	Middle	0.044	0.046	0.061	0.062	0.054	0.053
	Bottom	0.038	0.065	0.084	0.052	0.062	0.060
	Тор	0.057	0.055	0.078	0.048	0.056	0.059
Station 3	Middle	0.041	0.080	0.071	0.050	0.059	0.060
	Bottom	0.033	0.074	0.073	0.051	0.050	0.056
	Тор	0.040	0.066	0.079	0.044	0.054	0.057
Station 4	Middle	0.037	0.058	0.075	0.052	0.077	0.060
	Bottom	0.039	0.058	0.065	0.052	0.063	0.055
				Summ	ner		Average
	Тор	0.084	0.072	0.074	0.065	0.032	0.065
Reference	Middle	0.087	0.061	0.081	0.067	0.048	0.069
	Bottom	0.088	0.067	0.074	0.078	0.053	0.072
	Тор	0.091	0.063	0.064	0.062	0.054	0.067
Station 1	Middle	0.097	0.057	0.082	0.079	0.065	0.076
	Bottom	0.091	0.070	0.073	0.076	0.069	0.076
	Тор	0.076	0.080	0.075	0.079	0.040	0.070
Station 2	Middle	0.082	0.063	0.064	0.060	0.073	0.068
	Bottom	0.110	0.066	0.071	0.066	0.079	0.078
	Тор	0.098	0.060	0.073	0.066	0.047	0.069
Station 3	Middle	0.094	0.059	0.088	0.086	0.058	0.077
	Bottom	0.100	0.048	0.073	0.074	0.092	0.077
	Тор	0.090	0.054	0.078	0.065	0.039	0.065
Station 4	Middle	0.095	0.058	0.064	0.072	0.085	0.075
	Bottom	0.087	0.069	0.075	0.077	0.076	0.077

Appendix C3 SPTP IDZ Sites Nutrient Monitoring Results (1st to 5th day of sampling) 2022

Notes: WQG calculated from BC Approved Water Quality Guidelines Summary Report, Table 26E (long-term/average) and Table 26F (short-term acute/maximum). Values used for calculations are 30ppt salinity, 10°C, and pH of 8.

		PO₄ Phosp	ohate Tota	l mg/L – 2	022		
				Winter			Average
	Тор	0.063	0.065	0.061	0.064	0.062	0.063
Reference	Middle	0.068	0.062	0.065	0.061	0.062	0.064
	Bottom	0.056	0.059	0.065	0.063	0.063	0.061
	Тор	0.067	0.057	0.063	0.064	0.055	0.061
Station 1	Middle	0.067	0.058	0.066	0.068	0.061	0.064
	Bottom	0.067	0.063	0.064	0.054	0.060	0.062
	Тор	0.068	0.054	0.063	0.049	0.063	0.059
Station 2	Middle	0.064	0.063	0.065	0.065	0.061	0.064
	Bottom	0.057	0.059	0.064	0.065	0.063	0.062
	Тор	0.053	0.056	0.063	0.061	0.060	0.059
Station 3	Middle	0.063	0.061	0.065	0.064	0.061	0.063
	Bottom	0.066	0.063	0.064	0.055	0.060	0.062
	Тор	0.068	0.060	0.067	0.059	0.060	0.063
Station 4	Middle	0.065	0.063	0.064	0.060	0.061	0.063
	Bottom	0.067	0.062	0.067	0.058	0.061	0.063
				Summer			Average
	Тор	0.055	0.055	0.051	0.059	0.041	0.052
Reference	Middle	0.055	0.055	0.058	0.063	0.046	0.055
	Bottom	0.059	0.055	0.054	0.061	0.046	0.055
	Тор	0.051	0.057	0.052	0.057	0.044	0.052
Station 1	Middle	0.058	0.061	0.056	0.059	0.047	0.056
	Bottom	0.055	0.059	0.055	0.057	0.047	0.055
	Тор	0.050	0.057	0.052	0.057	0.039	0.051
Station 2	Middle	0.057	0.057	0.054	0.059	0.050	0.055
	Bottom	0.057	0.060	0.057	0.058	0.056	0.058
	Тор	0.052	0.058	0.052	0.056	0.036	0.051
Station 3	Middle	0.057	0.057	0.060	0.063	0.049	0.057
	Bottom	0.060	0.058	0.056	0.059	0.057	0.058
	Тор	0.053	0.054	0.051	0.055	0.038	0.050
Station 4	Middle	0.057	0.058	0.055	0.059	0.048	0.055
	Bottom	0.055	0.060	0.054	0.059	0.059	0.057

	То	tal Susper	nded Solid	ls mg/L -	- 2022		
				Winter			Average
	Тор	34.0	20.0	2.8	10.0	4.8	14.3
Reference	Middle	34.0	15.0	8.0	14.0	<1	17.8
	Bottom	37.0	18.0	6.8	7.2	<1	17.3
	Тор	31.0	32.0	2.4	3.2	3.6	14.4
Station 1	Middle	40.0	34.0	3.6	13.0	3.6	18.8
	Bottom	25.0	31.0	<1	10.0	3.6	17.4
	Тор	22.0	29.0	3.2	21.0	1.6	15.4
Station 2	Middle	28.0	24.0	<1	21.0	5.6	19.7
	Bottom	32.0	13.0	<1	2.0	<1	15.7
	Тор	22.0	15.0	1.6	2.0	6.4	9.4
Station 3	Middle	32.0	20.0	<1	11.0	3.2	16.6
	Bottom	10.0	26.0	1.2	4.0	1.2	8.5
	Тор	18.0	33.0	2.4	<1	1.2	13.7
Station 4	Middle	32.0	19.0	7.2	6.8	4.8	14.0
	Bottom	15.0	20.0	<1	8.8	3.2	11.8
				Summer			Average
	Тор	2.0	17.0	18.0	18.0	15.0	14.0
Reference	Middle	1.6	8.0	21.0	16.0	13.0	11.9
	Bottom	2.8	10.0	19.0	18.0	17.0	13.4
	Тор	<1	13.0	11.0	19.0	24.0	16.8
Station 1	Middle	2.8	40.0	16.0	18.0	24.0	20.2
	Bottom	10.0	46.0	11.0	24.0	20.0	22.2
	Тор	2.0	31.0	22.0	35.0	27.0	23.4
Station 2	Middle	1.2	8.0	19.0	31.0	32.0	18.2
	Bottom	3.2	29.0	20.0	22.0	18.0	18.4
	Тор	3.2	12.0	15.0	31.0	22.0	16.6
Station 3	Middle	4.0	29.0	15.0	21.0	15.0	16.8
	Bottom	2.4	27.0	12.0	16.0	12.0	13.9
	Тор	3.2	8.0	12.0	19.0	12.0	10.8
Station 4	Middle	4.0	10.0	24.0	17.0	40.0	19.0
	Bottom	1.6	8.4	32.0	23.0	11.0	15.2

Appendix C3, continued

		TKN	l mg/L – :	2022			
				Winter			Average
	Тор	0.033	0.079	0.027	<0.02	0.105	0.051
Reference	Middle	0.031	0.082	0.030	<0.02	0.100	0.051
	Bottom	0.044	0.067	0.039	< 0.02	0.119	0.056
	Тор	0.037	0.049	0.053	<0.02	0.067	0.043
Station 1	Middle	0.029	0.059	0.035	<0.02	0.166	0.060
	Bottom	0.029	0.065	0.048	<0.02	0.148	0.060
	Тор	0.042	0.059	0.054	<0.02	<0.02	0.035
Station 2	Middle	0.024	0.047	0.042	<0.02	0.129	0.050
	Bottom	0.055	0.041	0.055	<0.02	0.128	0.058
	Тор	0.038	0.029	0.059	<0.02	0.128	0.053
Station 3	Middle	0.056	0.043	0.039	< 0.02	0.100	0.050
	Bottom	0.049	0.046	0.045	<0.02	0.106	0.051
	Тор	0.069	0.036	0.078	<0.02	0.094	0.057
Station 4	Middle	0.044	0.040	0.050	<0.02	0.100	0.049
	Bottom	0.026	0.072	0.052	< 0.02	0.058	0.044
				Summer			Average
	Тор	0.125	0.045	0.050	0.149	0.108	0.095
Reference	Middle	0.099	0.060	0.080	0.095	0.107	0.088
	Bottom	0.107	0.051	0.058	0.121	0.106	0.089
	Тор	0.090	0.103	0.069	0.183	0.120	0.113
Station 1	Middle	0.047	0.063	0.042	0.128	0.091	0.074
	Bottom	0.103	0.054	0.053	0.118	0.063	0.078
	Тор	0.089	0.088	0.055	0.121	0.159	0.102
Station 2	Middle	0.101	0.071	0.095	0.110	0.112	0.098
	Bottom	0.120	0.061	0.048	0.124	0.074	0.085
	Тор	0.128	0.092	0.068	0.127	0.160	0.115
Station 3	Middle	0.084	0.053	0.044	0.112	0.090	0.077
	Bottom	0.084	0.064	0.045	0.113	0.063	0.074
	Тор	0.093	0.106	0.212	0.110	0.197	0.144
Station 4	Middle	0.093	0.048	0.046	0.115	0.119	0.084
	Bottom	0.117	0.051	0.044	0.139	0.078	0.086

Appendix C3, continued

Sulphate mg/L – 2022									
				Winter			Average		
	Тор	2,500	3,000	2,900	2,400	1,800	2,520		
Reference	Middle	2,800	2,400	3,300	2,100	2,000	2,520		
	Bottom	2,700	2,600	2,700	2,300	2,000	2,460		
	Тор	2,500	2,800	2,900	2,200	2,000	2,480		
Station 1	Middle	2,800	2,800	2,100	2,200	1,700	2,320		
	Bottom	2,500	2,400	2,300	2,200	1,600	2,200		
	Тор	2,400	2,900	2,700	2,400	2,000	2,480		
Station 2	Middle	2,300	3,000	2,100	1,700	1,700	2,160		
	Bottom	2,800	3,000	3,100	2,000	2,000	2,580		
	Тор	2,100	2,600	2,900	2,100	1,900	2,320		
Station 3	Middle	2,800	2,300	2,500	2,500	1,900	2,400		
	Bottom	2,700	2,400	3,000	2,200	1,800	2,420		
	Тор	2,400	2,300	2,800	2,000	2,100	2,320		
Station 4	Middle	2,500	2,000	2,700	2,100	1,900	2,240		
	Bottom	2,900	2,800	3,100	2,300	2,200	2,660		
			Average						
	Тор	2,200	2,500	2,500	2,500	2,100	2,360		
Reference	Middle	2,400	2,400	2,600	2,600	2,100	2,420		
	Bottom	2,300	2,400	2,600	2,600	2,100	2,400		
	Тор	2,300	2,100	2,500	2,500	2,200	2,320		
Station 1	Middle	2,400	2,600	2,600	1,000	2,200	2,160		
	Bottom	2,300	2,600	2,700	2,600	2,200	2,480		
	Тор	2,300	2,500	2,600	2,500	2,100	2,400		
Station 2	Middle	2,400	2,100	2,600	2,600	2,300	2,400		
	Bottom	1,700	2,600	2,500	2,100	2,300	2,240		
	Тор	2,300	2,500	2,400	2,400	2,100	2,340		
Station 3	Middle	2,400	2,500	2,600	2,500	2,300	2,460		
	Bottom	2,300	2,100	2,600	2,500	2,300	2,360		
	Тор	1,900	2,000	2,500	2,500	2,100	2,200		
Station 4	Middle	2,300	2,600	2,500	2,600	2,200	2,440		
	Bottom	2,200	2,300	2,600	2,500	2,300	2,380		

Appendix C3, continued

Appendix C3, continued

Nitrate Nitrogen mg/L – 2022								
	BC Approve							
				Average				
	Τορ	0.407	0.406	0.405	0.402	0.325	0.389	
Reference	Middle	0.410	0.406	0.401	0.405	0.327	0.390	
	Bottom	0.410	0.409	0.402	0.408	0.332	0.392	
	Тор	0.408	0.404	0.403	0.405	0.357	0.395	
Station 1	Middle	0.404	0.386	0.421	0.394	0.244	0.370	
	Bottom	0.409	0.395	0.406	0.408	0.299	0.383	
	Тор	0.408	0.418	0.403	0.409	0.289	0.385	
Station 2	Middle	0.433	0.416	0.407	0.406	0.272	0.387	
	Bottom	0.410	0.405	0.395	0.394	0.313	0.383	
	Тор	0.410	0.405	0.400	0.393	0.301	0.382	
Station 3	Middle	0.399	0.405	0.414	0.393	0.312	0.385	
	Bottom	0.404	0.407	0.407	0.398	0.322	0.388	
	Тор	0.402	0.405	0.398	0.397	0.319	0.384	
Station 4	Middle	0.409	0.407	0.396	0.396	0.320	0.386	
	Bottom	0.407	0.408	0.402	0.409	0.328	0.391	
			Average					
	Тор	0.252	0.284	0.278	0.246	0.167	0.245	
Reference	Middle	0.264	0.281	0.293	0.279	0.207	0.265	
	Bottom	0.285	0.281	0.296	0.282	0.202	0.269	
	Тор	0.217	0.232	0.255	0.194	0.062	0.192	
Station 1	Middle	0.281	0.284	0.288	0.218	0.184	0.251	
	Bottom	0.277	0.301	0.294	0.226	0.183	0.256	
	Тор	0.208	0.238	0.253	0.220	0.073	0.198	
Station 2	Middle	0.263	0.286	0.279	0.235	0.194	0.251	
	Bottom	0.269	0.300	0.291	0.225	0.250	0.267	
	Тор	0.224	0.248	0.256	0.227	0.066	0.204	
Station 3	Middle	0.278	0.296	0.305	0.249	0.199	0.265	
	Bottom	0.283	0.308	0.290	0.245	0.256	0.276	
	Тор	0.240	0.251	0.258	0.234	0.076	0.212	
Station 4	Middle	0.278	0.304	0.285	0.248	0.196	0.262	
	Bottom	0.219	0.307	0.284	0.252	0.250	0.262	

Appendix C3, continued

Nitrite Nitrogen mg/L – 2022										
	BC A									
			Winter							
	Тор	<0.002	<0.002	<0.002	< 0.002	0.003	0.001			
Reference	Middle	<0.002	<0.002	<0.002	< 0.002	0.003	0.001			
	Bottom	<0.002	<0.002	<0.002	< 0.002	0.004	0.002			
	Тор	<0.002	<0.002	<0.002	0.003	0.004	0.002			
Station 1	Middle	<0.002	<0.002	<0.002	0.003	0.003	0.002			
	Bottom	<0.002	<0.002	< 0.002	0.002	0.004	0.002			
	Тор	<0.002	<0.002	0.002	< 0.002	0.004	0.002			
Station 2	Middle	<0.002	<0.002	<0.002	0.002	0.004	0.002			
	Bottom	<0.002	<0.002	<0.002	0.003	0.004	0.002			
	Тор	<0.002	<0.002	<0.002	0.002	0.004	0.002			
Station 3	Middle	<0.002	<0.002	<0.002	0.003	0.004	0.002			
	Bottom	<0.002	<0.002	< 0.002	0.002	0.004	0.002			
	Тор	<0.002	<0.002	<0.002	0.003	0.005	0.002			
Station 4	Middle	<0.002	<0.002	<0.002	0.002	0.004	0.002			
	Bottom	<0.002	<0.002	<0.002	0.002	0.003	0.002			
			Average							
	Тор	0.005	0.005	0.004	0.004	0.002	0.004			
Reference	Middle	0.005	0.004	0.004	0.005	0.003	0.004			
	Bottom	0.005	0.004	0.004	0.004	0.003	0.004			
	Тор	0.006	0.005	0.003	0.004	<0.002	0.004			
Station 1	Middle	0.005	0.005	0.003	0.005	0.004	0.004			
	Bottom	0.005	0.005	0.003	0.005	0.003	0.004			
	Тор	0.005	0.004	0.004	0.005	<0.002	0.004			
Station 2	Middle	0.005	0.005	0.003	0.004	0.003	0.004			
	Bottom	0.005	0.005	0.003	0.004	0.004	0.004			
	Тор	0.005	0.004	0.004	0.004	< 0.002	0.004			
Station 3	Middle	0.005	0.005	0.006	0.006	0.003	0.005			
	Bottom	0.005	0.005	0.004	0.005	0.004	0.005			
	Тор	0.006	0.004	0.004	0.004	< 0.002	0.004			
Station 4	Middle	0.006	0.005	0.004	0.004	0.003	0.004			
	Bottom	0.005	0.005	0.004	0.005	0.004	0.005			

Salinity – 2022									
				Winter			Average		
	Тор	29.3	29.9	29.3	29.9	27.5	29.2		
Reference	Middle	29.4	30.6	29.7	29.8	27.9	29.5		
	Bottom	29.3	30.0	29.7	30.2	27.9	29.4		
	Тор	29.0	29.8	29.4	29.6	28.1	29.2		
Station 1	Middle	29.3	29.9	29.4	29.8	28.9	29.5		
	Bottom	29.6	30.1	29.5	30.2	28.7	29.6		
	Тор	29.1	29.8	29.4	29.8	28.0	29.2		
Station 2	Middle	29.2	30.0	29.7	29.9	28.5	29.5		
	Bottom	29.5	30.1	29.8	30.2	28.4	29.6		
	Тор	29.2	30.1	29.3	29.8	27.9	29.3		
Station 3	Middle	29.1	30.0	29.4	29.7	28.0	29.2		
	Bottom	29.6	30.0	29.6	29.9	28.1	29.4		
	Тор	29.4	29.9	29.4	29.9	27.6	29.2		
Station 4	Middle	29.4	30.2	29.4	29.8	27.7	29.3		
	Bottom	29.5	30.0	29.6	30.2	27.9	29.4		
				Summer			Average		
	Тор	28.1	29.1	28.0	29.1	25.5	28.0		
Reference	Middle	28.6	29.4	29.0	30.2	27.0	28.8		
	Bottom	29.3	29.3	29.1	30.0	26.7	28.9		
	Тор	27.7	29.4	28.3	29.1	26.0	28.1		
Station 1	Middle	29.3	30.0	29.4	29.7	27.3	29.1		
	Bottom	29.1	30.0	29.5	29.8	27.4	29.2		
	Тор	27.7	29.4	28.3	29.2	25.9	28.1		
Station 2	Middle	29.1	29.8	29.1	29.7	27.4	29.0		
	Bottom	29.2	29.9	29.4	29.4	28.6	29.3		
	Тор	28.1	29.4	28.3	29.2	26.1	28.2		
Station 3	Middle	29.2	30.0	29.3	29.7	27.7	29.2		
	Bottom	29.3	30.1	29.4	29.9	28.8	29.5		
	Тор	28.0	29.6	28.3	29.0	26.0	28.2		
Station 4	Middle	29.3	30.1	29.2	30.0	27.6	29.2		
	Bottom	28.1	30.2	29.3	29.9	28.7	29.2		

Appendix C3, continued

N Nitrogen Total mg/L – 2022										
			Winter							
	Тор	0.440	0.485	0.432	0.338	0.433	0.426			
Reference	Middle	0.441	0.488	0.431	0.342	0.430	0.426			
	Bottom	0.453	0.476	0.441	0.344	0.455	0.434			
	Тор	0.445	0.454	0.455	0.356	0.428	0.428			
Station 1	Middle	0.433	0.445	0.455	0.352	0.413	0.420			
	Bottom	0.438	0.461	0.453	0.353	0.450	0.431			
	Тор	0.450	0.477	0.459	0.343	0.299	0.406			
Station 2	Middle	0.457	0.463	0.449	0.354	0.405	0.426			
	Bottom	0.465	0.446	0.450	0.360	0.444	0.433			
	Тор	0.448	0.433	0.459	0.339	0.433	0.422			
Station 3	Middle	0.455	0.448	0.453	0.345	0.416	0.423			
	Bottom	0.453	0.453	0.452	0.347	0.432	0.427			
	Тор	0.472	0.442	0.477	0.349	0.417	0.431			
Station 4	Middle	0.453	0.447	0.446	0.351	0.424	0.424			
	Bottom	0.434	0.480	0.454	0.348	0.390	0.421			
				Summer			Average			
	Тор	0.383	0.334	0.332	0.399	0.277	0.345			
Reference	Middle	0.369	0.345	0.376	0.379	0.316	0.357			
	Bottom	0.396	0.336	0.358	0.408	0.310	0.362			
	Тор	0.312	0.340	0.328	0.381	0.185	0.309			
Station 1	Middle	0.333	0.352	0.333	0.350	0.278	0.329			
	Bottom	0.385	0.360	0.350	0.348	0.249	0.338			
	Тор	0.303	0.331	0.311	0.345	0.233	0.305			
Station 2	Middle	0.370	0.362	0.378	0.349	0.309	0.354			
	Bottom	0.394	0.366	0.342	0.353	0.328	0.357			
Station 3	Тор	0.357	0.344	0.327	0.358	0.226	0.322			
	Middle	0.367	0.354	0.354	0.367	0.292	0.347			
	Bottom	0.372	0.377	0.339	0.364	0.322	0.355			
	Тор	0.339	0.361	0.474	0.348	0.274	0.359			
Station 4	Middle	0.377	0.357	0.334	0.368	0.318	0.351			
	Bottom	0.341	0.363	0.333	0.396	0.331	0.353			

Appendix C3, continued

	Sulfide mg/L – 2022										
			Average								
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Reference	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Station 1	Middle	0.002	<0.0018	<0.0018	<0.0018	<0.0018	0.0012				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Station 2	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	0.003	0.0012				
Station 3	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	0.029	0.0065				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Station 4	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
			Average								
Reference	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Station 1	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	0.013	0.0033				
Station 2	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Station 3	Middle	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
	Тор	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				
Station 4	Middle	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	<0.0018				
	Bottom	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018				

Appendix C3, continued

Total Organic Carbon mg/L – 2022									
				Average					
	Тор	490	120	68	1,300	150	426		
Reference	Middle	500	120	46	1,400	190	451		
	Bottom	410	110	62	1,400	150	426		
	Тор	490	100	61	1,400	140	438		
Station 1	Middle	500	110	61	1,100	170	388		
	Bottom	530	110	64	760	140	321		
	Тор	510	110	65	1,500	1,500	737		
Station 2	Middle	520	120	71	1,400	150	452		
	Bottom	540	120	62	1,400	140	452		
	Тор	540	120	67	1,500	180	481		
Station 3	Middle	470	120	47	1,400	190	445		
	Bottom	490	120	69	850	190	344		
	Тор	480	140	60	1,500	140	464		
Station 4	Middle	540	120	71	1,500	180	482		
	Bottom	520	120	55	1,400	150	449		
				Average					
	Тор	180	110	120	100	80	118		
Reference	Middle	210	110	150	94	87	130		
	Bottom	200	120	120	100	110	130		
	Тор	210	110	160	99	83	132		
Station 1	Middle	220	110	150	100	100	136		
	Bottom	110	120	140	91	81	108		
	Тор	69	130	150	100	99	110		
Station 2	Middle	210	140	140	120	100	142		
	Bottom	360	110	130	99	110	162		
	Тор	110	130	110	100	98	110		
Station 3	Middle	210	120	130	95	100	131		
	Bottom	230	120	150	100	110	142		
	Тор	200	120	140	110	88	132		
Station 4	Middle	220	120	140	96	110	137		
	Bottom	66	120	170	120	96	114		

Appendix C3, continued