Resident's Presentation to Technical Oversight Panel Core Area Liquid Waste Management Plan Capital Regional District 2015-11-23

Considerations for Distributed Tertiary Treatment With Optimized Resource Recover Oscar Regier

Victoria BC

CAPITAL REGIONAL DISTRICT - CALWMP | WWT SYSTEM FEASIBILITY AND COSTING ANALYSIS | TECHNICAL MEMORANDUM #2

CAPITAL REGIONAL DISTRICT - CALWMP | WWT SYSTEM FEASIBILITY AND COSTING ANALYSIS | TECHNICAL MEMORANDUM #2

CAPITAL REGIONAL DISTRICT - CALWMP | WWT SYSTEM FEASIBILITY AND COSTING ANALYSIS | TECHNICAL MEMORANDUM #2

CAPITAL REGIONAL DISTRICT - CALWMP | WWT SYSTEM FEASIBILITY AND COSTING ANALYSIS | TECHNICAL MEMORANDUM #2

file:///C:/Users/Oscar/Documents/SOR%20Reference/WWTP%20-%20CRD/CRD%20WWTP%20Facilities/10-Westside%20Plan/Urban%20Systems%20-%20Carollo/Final%20Technical%20Memo%20No%202%20-%20Review%20and%20Refine%20Option%20Sets.pdf

Ipsos Public Affairs PRIORITIZING CONCERNS AROUND TREATING AREA WASTEWATER (PROMPTED)

https://www.crd.bc.ca/docs/default-source/Wastewater-Planning-2014/Westside/westside-solutions-ipsosreid-report.pdf?sfvrsn=0

2014/150615reportonsewagetreatmentsurvey-openinvitationresults.pdf?sfvrsn=2

https://www.crd.bc.ca/docs/default-source/crd-document-library/committeedocuments/corearealiguidwastemanagementcommittee/20090610/2009-june-10-item-06-ees-09-60-calwmp-infilw-and-infiltration-biennialreport-for-2007-2008R.pdf?sfvrsn=0

A 2010 City of Victoria report to identify sewer system capacity challenges identified six major trunk systems that are currently undersized, one lift station at capacity, and four additional trunk main systems that would be undersized for 2026 and 2056 flows (map below). "These challenges can result in back-ups and overflows leading to potential property damage and health risks." A 15 year capital plan valued at \$29.5 million has been developed to address these challenges in the Clover Point sewer system.

The proposed regional and sub-regional plans for Rock Bay are dependent on conveying all flows to the Rock Bay site. If existing City of Victoria trunk mains must be upgraded to enable this conveyance, why is the cost of this upgrading not included in the project cost (even though funding may come from the City)?

https://www.crd.bc.ca/docs/default-source/environmental-engineering/ii-management-plan---final.pdf?sfvrsn=2

Table 3.3	Cost Estimate to Rehabilitate 2,270 ha to Reduce Flow to 4xADWF
-----------	---

Item Description	Quantity	Percent Requiring Rehabilitation	Unit Rate	Total Cost (million)	
Manholes	4,750 no.	60%	\$2,500	\$7.13	
Vents	890 no.	60%	\$2,000	\$1.07	
Public Sewers	365 km	60%	\$500	\$109.50	
Private Sewer Laterals	20,900 no.	60%	\$4,500	\$56.43	
Private Storm Laterals	20,900 no.	30%	\$5,000	\$31.35	
			TOTAL	\$205.48	

Table 3.4	Cost Estimate to Rehabilitate 5.010 ha to Reduce Flow to 2xADWF
I able 3.4	Cost Estimate to Renabilitate 5,010 ha to Reduce Flow to Excert

Quantity 8,330 no.	Percent Requiring Rehabilitation	Unit Rate	Total Cost (million)	
	70%	\$2,500	\$14.58	
910 no.	70%	\$2,000	\$1.27	
685 km	70%	\$500	\$239.75	
35,600 no.	70%	\$4,500	\$112.14	
35,600 no.	30%	\$5,000	\$53.40	
		TOTAL	\$421.14	
	Quantity 8,330 no. 910 no. 685 km 35,600 no. 35,600 no.	Quantity Percent Requiring Rehabilitation 8,330 no. 70% 910 no. 70% 685 km 70% 35,600 no. 70% 35,600 no. 30%	Quantity Percent Requiring Rehabilitation Unit Rate 8,330 no. 70% \$2,500 910 no. 70% \$2,000 685 km 70% \$2,000 35,600 no. 70% \$4,500 35,600 no. 30% \$5,000	

SEA OUTFALL

ASPECTS OF DISTRIBUTED WASTEWATER TREATMENT PLANTS, CONVEYANCE, REDUNDANCY & INTER-RELATED OPERATIONS

DOES AN OPPORTUNITY LIKE THIS EXIST IN THE CRD CORE AREA?

Ipsos Public Affairs

PRIORITIZING DESIGN PRIORITIES (AMONG THOSE WHO PREFER TWO OR MORE HIGHER COST SOLUTIONS)

A higher cost solution that treats water so it can be used for things like irrigation	31	8%	22%	9%
A higher cost solution that allows conversion of solids to produce revenue	23%	32	%	13%
A higher cost solution that reduces the impact on neighbourhood quality of life	21%	19%	19%	
A higher cost wastewater treatment facility that allows for multi-use such as green space or renting as commercial property	17%	14% 1	9%	

Most Important Second Most Important Third Most Important

Q12. You supported more than one option that increases project costs. If only one of your choices was affordable, which one is MOST important to you? Which one is SECOND MOST important to you? Which one is THIRD MOST important to you?

- Base: Those who prefer two or more higher cost solutions (n=357)
- 29 © 2015 lpsos.

GAME CHANGERS

https://www.crd.bc.ca/docs/default-source/Wastewater-Planning-2014/Westside/westside-solutions-ipsos-reid-report.pdf?sfvrsn=0

In 2009 the CRD rejected the option of distributed treatment facilities for the core area on the basis of excessive costs for such a system as estimated by their consultants. Were their estimates realistic? Compare the estimated unit costs for each of the distributed plants in the consultant's three options and the unit costs used for comparison by the CRD's peer review committee with the unit costs of a cross-section of existing treatment facilities located in various regions in Canada and the USA shown in the chart below.

Summary

* Based on 5 MGD treatment capacity as compared to Conventional Secondary Treatment.

South Central Membrane Association

Figure 16: Conventional Activated Sludge Build-out Site Requirements

Figure 17: MBR Build-Out Site Requirements

"Both processes were reviewed and MBR treatment was selected. It was determined that the total power cost when compared to conventional treatment will be close to the same due to the additional system ventilation and odor control required in the conventional treatment. Intermediate pumping requirements are the same for both processes. Most importantly, the MBR process will provide the highest level of water quality and maximize the available open space. Construction costs of the MBR process is estimated to be lower than conventional treatment because of the fewer number of tanks, ability to phase construction with low impact on the neighbors..."

http://www.tri-cityservicedistrict.org/sites/default/files/fileattachments/tri-city_site_master_plan_final.pdf

SANTA PAULA CA – WRF, ADWF Capacity 13 MLD existing, 16 MLD design

GOODYEAR AZ - Palm Valley WRF, AAF Capacity 19 MLD existing; expandable to 31 MLD

PEORIA AZ – Butler WRF, ADWF Capacity 37.8 MLD existing, 50 MLD design

APPLE VALLEY CA – Architectural Renderings of Proposed Plants

VICTORIA BC – Dockside Green WWTP, Capacity 0.19 MLD existing, 0.38 MLD with additional membrane filters

CONSIDERATION OF DISTRIBUTED, ADVANCED TERTIARY WASTEWATER TREATMENT WITH OPTIMIZED RESOURCE RECOVERY

Page 1	Page 2
Introduction	Maps of options that have been presented in the current studies
Page 3	Page 4
Results of recent public polls	Map of existing Core Area trunk mains and outfalls
Page 5	Page 6
Map of existing I & I rates in the Core Area	Map of undersized trunk mains in the City of Victoria
Page 7	Page 8
Map of raw sewage overflow point in the Core Area	• Flow chart, potential solutions to I & I problems and related cost estimates
Page 9	Page 10
• Map of trunk mains in eastern section of Core Area and schematic of East	Schematic of distributed treatment plants concept applied to East Coast
Cost Intercepter	intercepter
Page 11	Page 12
Schematic of redundant treatment process trains – example 1	Schematic of redundant treatment process trains – example 2
Page13	Page 14
• Map of possible option for distributed treatment plants optimizing use of	Result of recent public poll regarding higher cost solutions
existing conveyance infrastructure	
Page 15	Page 16
Unit costs of some 40 recently completed tertiary treatment plants	Cost trends for MBR versus Conventional Activated Sludge treatment plants
Page 17	Page 18
• Figures comparing site area requirements for a conventional activated	Photos of several existing tertiary treatment plants constructed within
sludge plant and a membrane bioreactor plant	developed urban areas
	Architectural renderings of proposed treatment plants

Note: Page 14 source: SCMA Annual Conference & Expo "Membranes: Basics, Barriers, and Breakthroughs" San Antonio, TX – Aug. 20 - 22, 2014 © SCMA Joshua Berryhill, PE Enprotec / Hibbs & Todd, Inc. (eHT) It is Time for MBR – A Comparison of MBR Vs. Traditional Wastewater Treatment Technologies http://www.e-ht.com/Docs/SCMA2014-IsitTimeforMBR.pdf