

FULFORD WATER SERVICE COMMISSION ANNUAL GENERAL MEETING

Notice of Meeting on **Monday**, **June 12**, **2023** at **10:00 am**Salt Spring Island Multi Space (SIMS) Boardroom, 124 Rainbow Road, Salt Spring Island, BC

Gary Holman Carole Eyles Alan Martin Bren Walker

Zoom:

https://us06web.zoom.us/j/89709303069?pwd=Q0w2L1ArcmJBUmxvLzdQajY4eURiUT09

AGENDA

Purpose of the Annual General Meeting

The agenda for the Annual General Meeting (AGM) is approved by the members of the Commission. The purposes (and hence the agenda items) of the meeting are:

- To have the last year's AGM minutes approved (by Commission members), and to
 present reports on the work of the Commission on the past year's operation,
 maintenance, capital upgrades and financial information of the service to the service
 residents and owners,
- To nominate members for appointment to the Commission, and
- To enable the public to share comments on subjects which relate to the work of the Commission. The Commission can identify (under "new business") issues on which it wants feedback at the meeting. Motions raised by the public at the AGM will be considered by the commission at a subsequent regular meeting.

The Annual General Meeting is for the 2022 fiscal year.

Outstanding Business - None

1.	Territorial Acknowledgment / Call Meeting to Order	
2.	Approval of Agenda	1-2
3.	Adoption of Minutes of the 2021 Annual General Meeting held on June 3, 2022	3-5
	Adoption of Special Minutes of April 14, 2023	6-7
4.	Director and Chair's Report	
5.	Report	
	5.1 Annual Report for the 2022 Fiscal Year	8-1
	There is no recommendation. This report is for information only.	
e E	New Business - None	

7.

- 8. Next Meeting TBD
- 9. Adjournment

Minutes of the Annual General Meeting Fiscal Year 2021 of the Fulford Water Service Commission

Held Monday, June 3, 2022 at the Fulford Hall, 2591 Fulford-Ganges Road, Salt Spring Island, BC

DRAFT

Present: **CRD Director**: Gary Holman

Commission Members: Carole Eyles, Gord Singbeil (via Zoom), Alan Martin,

and Anthony Maude

Staff: Karla Campbell, Manager, SSI Electoral Area, Dean Olafson, Manager of SSI Engineering, Dan Robson, Manager, Saanich Peninsula and Gulf Islands Operations (via Zoom), Lia Xu, Manager, Manager, Financial Services (via Zoom),

and Shayla Burnham, Recording Secretary

1. Territorial Acknowledgement / Call Meeting to Order

Chair Eyles provided a territorial acknowledgement and called the meeting to order at 10:01 am.

2. Approval of Agenda

MOVED by Commissioner Martin, **SECONDED** by Commissioner Singbeil, that the Fulford Water Service Commission's Annual General Meeting agenda for the Fiscal Year 2021 be approved as amended by adding item 7.1 Weston Lake Study, item 7.2 Vortex Application and item 7.3 Work on the Water Leak that was Discovered.

CARRIED

3. Adoption of Minutes of the 2020 Annual General Meeting held on November 2, 2021

MOVED by Commissioner Maude, **SECONDED** by Commissioner Singbeil, that the Fulford Water Service Commission's Fiscal Year 2020 Annual General Meeting minutes of November 2, 2021 be approved as presented.

CARRIED

4. Director and Chair's Report

Director Holman briefly reported:

 The Local Community Commission (LCC) Advisory Committee has met two times, with a third meeting scheduled for the evening of Monday, June 6, 2022.
 Broadens representation with the possibility of consolidating island wide services under an elected LCC.

Chair Eyles briefly reported:

- Increased communication across island wide local service Commissions.
- Essential fencing to be installed at the treatment plant.

- Atmospheric river and subsequent flooding took out the pipe over Weston Creek requiring an emergency fix and appreciation was expressed for the quick response by staff.
- Concern expressed for the potential future Vortex development with the Fulford Water Service expected to supply water.

5. Report

5.1 Annual Report for 2021 Fiscal Year

- Staff provided a brief overview of the Annual Report for the 2021 Fiscal Year
- The Commission called attention to the increase in water usage for June and July and asked staff how close to capacity the service was during that time. Staff confirmed that capacity had not been exceeded for what the licence supplies and further confirmed a review of the information would occur and an accurate update would be provided to the Commission.

There is no recommendation. This report is for information only.

6. Election of Chair and Commissioners

- The Notice of Annual General Meeting was advertised as per requirements and two nominations were received.
- Commissioner Maude was nominated to continue for another term.
- Commissioner Eyles was nominated to continue for another term.
- Commissioner Singbeil provided his resignation following December 31, 2022.
- With one position available for the 2023-2024 term, a secret ballot occurred and Bren Walker was nominated as a Commissioner. Staff to forward her application to the CRD Board of Directors for approval.
- Commissioner Maude nominated Commissioner Eyles for position of Chair. After hearing no further nominations, Commissioner Eyles was re-elected as Chair.

7. New Business

7.1 Weston Lake Study

 The Commission requested an update regarding the Weston Lake Water Sustainability Report and staff confirmed the report was in draft form and with the consultant. The report will be provided to the Commission by staff once it's made public.

7.2 Vortex Application

- Staff are working with the developer on their study and once complete, staff will provide the Commission with a report.
- The Commission stated that inaccurate information related to firefighting was posted to the Vortex development public website and reservoir capacity concerns were expressed.

 The Commission expressed support for potential future secondary suits within the service area following an Islands Trust zoning bylaw amendment to assist with affordable housing.

7.3 Work on the Water Leak that was Discovered

 Staff confirmed water production rates have dropped and that North Salt Spring Water Works had not found anything on the public side of the water system however, potential leaks may have been discovered on the private side of the water system. Staff to visit 107 Morningside Road to investigate a potential water leak and/or blockage on the private side.

The Commission asked who was responsible for the moss removal on the roof of the treatment plant and staff to report back to the Commission with an update.

8. Adjournment

MOVED	by (Commissioner	Maude,	SECONDED	by	Commissioner	Martin,	that	the
Fulford \	Nater	Service Comr	nission a	djourn the mee	eting	g at 11:06 am.			

CARRIED

CHAIR	
SENIOR MANAGER	

Minutes of the Special Meeting of the Fulford Water Service Commission Held Friday, April 14, 2023 at the Salt Spring Island Multi Space (SIMS) Boardroom, Salt Spring Island, BC

DRAFT

Present: **CRD Director**: Gary Holman

Commission Members: Carole Eyles, Bren Walker (via Zoom), Alan Martin, and

Anthony Maude (via Zoom)

Staff: Karla Campbell, Manager, SSI Electoral Area, Dean Olafson, Manager of

SSI Engineering, and Shayla Burnham, Recording Secretary

1. Territorial Acknowledgement / Call Meeting to Order

Commissioner Eyles provided a territorial acknowledgement and called the meeting to order at 10:01 am.

2. Election of the Chair

Staff called for nominations from the floor. Commissioner Martin nominated Commissioner Eyles as Chair. After calling three times and hearing no other nominations, Commissioner Eyles was re-elected as Chair.

3. Approval of Agenda

MOVED by Commissioner Eyles, **SECONDED** by Commissioner Martin, that the Fulford Water Service Commission approve the Friday, April 14, 2023 agenda as presented.

CARRIED

Commissioner Maude announced his resignation effective Friday, April 14, 2023.

4. Report

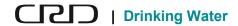
4.1 Fulford Asbestos Cement Watermain Replacement Strategy

- The Commission requested a meeting with McElhanney to discuss the report in detail. The Commission will provide staff a list of questions ahead of the meeting.
- Staff to provide the Commission with a quote outlining the expenses of the meeting prior to scheduling.
- Staff to forward the Request for Proposal (RFP) to the Commission.
- Staff to forward the cost of the report to the Commission.
- Staff to review the Freedom of Information and Protection of Privacy Act (FOIPPA) and forward the RFP response received by McElhanney to the Commission for information.

MOVED by Commissioner Walker, **SECONDED** by Commissioner Martin, that the Fulford Water Service Commission request that the McElhanney Technical Report be referred back to staff for additional information and that staff schedule a meeting between McElhanney and the Fulford Water Service Commission to discuss the report in detail.

CARRIED

Director Holman left the meeting at 11:02am.


- 5. Next Meeting Monday, June 12, 2023 at 10:00AM in the Salt Spring Island Multi Space (SIMS) Boardroom, 124 Rainbow Road, Salt Spring Island, BC V8K 2V5
- 6. Adjournment

MOVED by Commissioner Eyles, that the Fulford Water Service Commission adjourn the meeting at 11:19 am.

	CARRIED
CHAIR	
SENIOR MANAGER	

Fulford Water Service

2022 Annual Report

INTRODUCTION

This report provides a summary of the Fulford Water Service for 2022. It includes a description of the service, summary of the water supply, demand, and production, drinking water quality, operations highlights, capital project updates and financial report.

SERVICE DESCRIPTION

The Fulford Water Utility is a semi-rural residential community located on Salt Spring Island. It services the Fulford Elementary School and a small commercial component, including the BC Ferries Terminal. The service was created in 1968 as the Fulford Water Improvement District and became a CRD service in 2004. The Fulford Water Utility (Figure 1) is comprised of 102 parcels of land with 95 single-family equivalents (SFE) as the use on some parcels represents more than one dwelling.

The utility obtains its drinking water from Lake Weston, a small lake that lies within an uncontrolled multiuse watershed outside and northeast of the service area. The Capital Regional District (CRD) holds two licenses to divert a total of up to 291.6 cubic metres per day and store up to 49,339 cubic metres. Lake Weston is estimated to have a total volume of 1,090,000 cubic metres. Lake Weston is subject to seasonal water quality changes and is affected by periodic algae blooms.

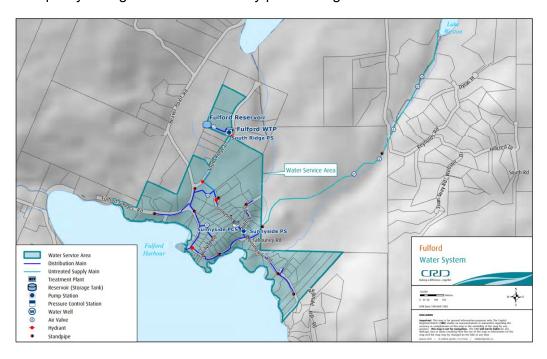


Figure 1: Fulford Water Service

The Fulford water system is primarily comprised of:

 a water treatment plant (WTP) that draws water from Lake Weston and treats it at a location on South Ridge Drive, adjacent to the Fulford Elementary School. The water is treated using a rapid mix system, flocculation, dissolved air floatation (DAF) and filters, ultraviolet disinfection, then chlorination prior to being pumped, via the distribution system to a reservoir. The water treatment plant (WTP) design flow rate is 4.5 litres/sec (60 lgpm);

- one raw water pump station on Sunnyside Drive near Hilltop Road (flow rate of two pumps running is 2.3 litres/sec (30 lgpm);
- approximately 4,500 m of water distribution pipe;
- 1 water reservoir 360 m³ (80,000 lg);
- fire hydrants, standpipes, and gate valves;
- water service connections complete with water meters to commercial properties only;
- 1 pressure regulating station (PCS) on Sunnyside Drive near Hilltop Road.

WATER PRODUCTION AND DEMAND

Annual water production since 2017 is shown in Figure 2. A total of 33,970 m³ of water was extracted from Lake Weston in 2022. This is a 16% increase from the previous year and a 16% increase from the 5-year rolling average.

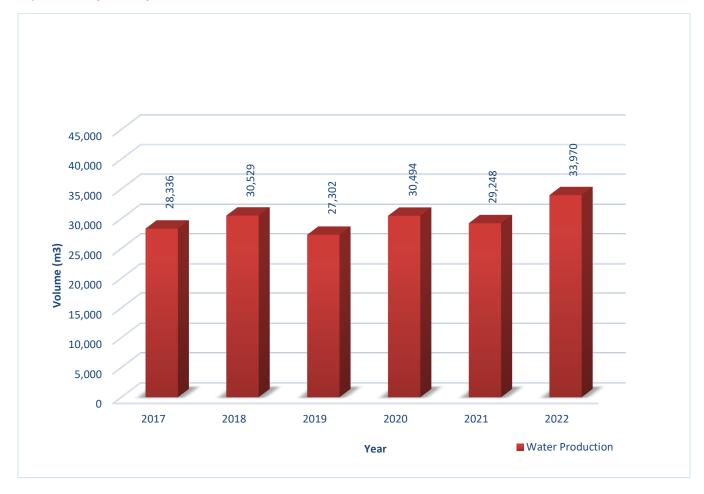


Figure 2: Fulford Water Service Annual Water Production

Water production by month for the past five years is shown in Figure 3. The monthly water production trends are typical for small water systems such as the Fulford water system. Water production from September to November 2022 was higher due to two water system leaks that were difficult to locate.

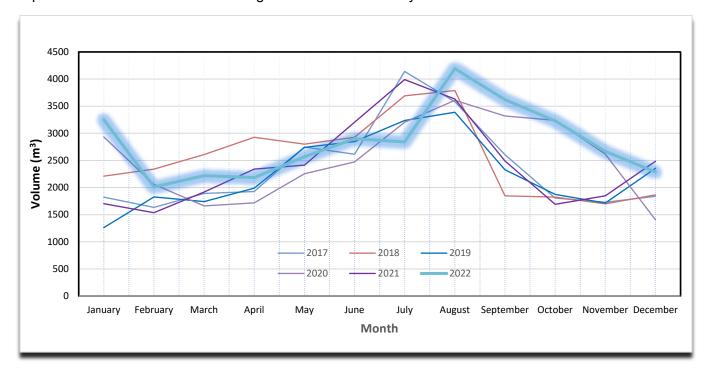


Figure 3: Fulford Water Service Monthly Water Production

The Fulford Water System does not have residential water meters and therefore the average per single-family equivalent (SFE) is simply a calculated value. Utilizing 95 SFE and deducting an allowance of 20% for non-revenue water such as water system leaks, fire hydrant usage and water system maintenance and operational use (water main flushing, filter system backwashing), the average SFE is 286m3 per year for 2022. This is a 16% increase from the previous year. However, this increase is likely the result of the non-revenue water component (i.e. system leaks) and not an indicator of higher actual SFE water consumption.

WATER QUALITY

In general, the Fulford Water System provided good quality drinking water to its customers in 2022. Numerous samples for a variety of water quality parameters were collected and analysed throughout the year. The results confirmed that the DAF and disinfection treatment stages were effective in treating raw water from Lake Weston.

Typical Fulford drinking water quality characteristics for 2022 are summarized as follows:

Raw Water:

Lake Weston exhibited low concentrations of total coliform bacteria (TC) throughout most parts of the year with higher concentrations during the summer months. *E.coli* bacteria were only found in very low concentrations in the summer.

No parasitic cysts (*Giardia*) and no of parasitic oocysts (*Cryptosporidium*) were detected in the raw source water from the lake.

Raw water from the lake was slightly hard (annual median 34.25 mg/L CaCO₃).

A total organic carbon (TOC) concentration range from 5.1 to 5.4 mg/L indicates a mesotrophic (semi-productive) lake status. This has been consistent with historic data.

Four metal test results showed moderately low iron and manganese concentrations in the raw water. Manganese concentrations in the raw water during February were slightly higher than the aesthetic objective in the Guidelines for Canadian Drinking Water Quality (GCDWQ). Either of these metals in exceedance of the aesthetic objectives can cause, if untreated, aesthetic issues such as water discolouration. The raw water colour was consistently elevated which may be a result of tannin and lignin, all natural components found in local lakes.

The raw water turbidity (cloudiness) was often below 1 NTU, only in the winter and spring it was regularly higher with a peak of 4.9 NTU in April. Higher turbidity during the wet season is often related to rainfall and runoff events.

Treated Water:

Treated water was bacteriologically safe to drink; no indicator bacteria were found in any sample throughout the year.

Treated water turbidity was well below the GCDWQ limit of 1 NTU for the entire year.

TOC (median 2.2 mg/L) in the treated water was consistent with historic trends. As TOC is a precursor for disinfection by-products, concentrations consistently much higher than 2 mg/L can lead to exceedances with these substances.

Regulated disinfection by-products such as trihalomethanes (THM) and haloacetic acids (HAA) were well below the GCDWQ limits (100 μ g/L and 80 μ g/L) with annual averages of 53.25 μ g/L and 40.75 μ g/L respectively.

The water temperature was in exceedance of the aesthetic objective of 15°C from the end of June to October, 2022. There is no mitigation for this.

The free chlorine residual concentrations in the distribution system were within the desired range (0.27 – 2.10 mg/L) and indicate an effective secondary disinfection process.

Table 1 and 2 below provide a summary of the 2022 raw and treated water test results.

Water Quality data collected from this drinking water system can be reviewed on the CRD website:

https://www.crd.bc.ca/about/data/drinking-water-quality-reports/

OPERATIONAL HIGHLIGHTS

The following is a summary of the major operational issues that were addressed by during the 2022 reporting period:

- Raw water intake inspection and reinstatement of the intake float system.
- Water system leak repairs:
 - o 117 Hilltop Road
 - o 215 Morningside
- Water treatment plant corrective maintenance:
 - Valve and valve actuator replacement
 - Air saturator trouble shooting and repairs
 - Turbidity meter troubleshooting and repairs

- SCADA system communications failure and repairs
- o Replacement of electronic hand/off/auto switches of various components

CAPITAL IMPROVEMENTS

The following is a summary of the major capital improvements including year-ending spending for 2022:

<u>Weston Creek Watermain Crossing on Morningside Road (CE.507.4601)</u>: The water main along Morningside Road is exposed and spans Weston Creek making it susceptible to damage by people, vehicles, rocks or stream debris. Due to a wet year in 2019 and high stream water level, this project was deferred until the next dry season. Detailed design is complete with construction scheduled for 2023.

Project	Spending
Budget	\$169,100
Project Management	(\$32,471)
Contract	(\$57,724)
Emergency Repair	(\$15,125)
Balance Remaining	\$63,780

<u>Safe Work Procedures (CE.699.4504)</u>: The work scope includes reviewing and developing safe work procedures for operational and maintenance tasks. On-going as capital improvements necessitate.

Project	Spending
Budget	\$11,000
Project Management	(\$296)
Contract	(\$2,292)
Supplies/Materials	(\$209)
Total Project	\$8,203

Power Generation Equipment Study (CE.735.4504): Preliminary investigation of electrical requirements for new onsite back-up power.

Project	Spending
Budget	\$10,000
Project Management	\$0
Balance Remaining	\$10,000

<u>Fulford WTP</u> Security Fencing (CE.791.2000): Security fencing for the Fulford Water Treatment Plant. Note that CRD Risk Management contributed one half of the construction contract amount in the amount of \$8,715. This work was executed and completed early in 2022.

Project	Spending
Budget	\$28,715
Contract	(\$17,430)
Project Management	(\$2,405)
Project Closed Balance Returned to CRF	\$8,880

<u>Replacement of AC Water Pipelines – Study and Design (CE.794.6001)</u>: Investigation, analysis, criticality assessment and option review to replace the asbestos cement water supply and distribution lines for the Fulford water system.

Project	Spending
Budget	\$90,000
Project Management	(\$11,099)
Contract	\$0

Balance Remaining	\$78,901
- Dalanco Romannig	ų. o,oo.

<u>Installation of Turbidity Meter on Influent Line (CE.794.1601)</u>: Supply and install a turbidity meter on the influent line to improve water quality monitoring and process operation.

Project	Spending
Budget	\$500
Project Management	\$0
Equipment	\$0
Balance Remaining	\$500

2022 FINANCIAL REPORT

Please refer to the attached 2022 Statement of Operations and Reserve Balances.

Revenue includes parcel taxes (Transfers from Government), fixed user fees (User Charges), water sales (Sale-Water), interest on savings (Interest earnings), transfers from the Operating Reserve Fund, and miscellaneous revenue such as late payment charges (Other revenue).

Expenses includes all costs of providing the service. General Government Services includes budget preparation, financial management, utility billing and risk management services. CRD Labour and Operating Costs includes CRD staff time as well as the costs of equipment, tools, and vehicles. Debt servicing costs are interest and principal payments on long term debt. Other Expenses includes all other costs to administer and operate the water system, including insurance, supplies, water testing, and electricity.

The difference between Revenue and Expenses is reported as Net revenue (expenses). Any transfers to or from capital or reserve funds for the service (Transfers to own funds) are deducted from this amount and it is then added to any surplus or deficit carry forward from the prior year, yielding an Accumulated Surplus (or deficit). In alignment with Local Government Act Section 374 (11), any deficit must be carried forward and included in the next year's financial plan.

WATER SYSTEM PROBLEMS - WHO TO CALL:

To report any event or to leave a message regarding the Fulford water system, call either:

CRD water system *emergency call* centre: 1-855-822-4426 (toll free)

1-250-474-9630 (toll)

CRD water system *general enquiries* (toll free): 1-800-663-4425

When phoning with respect to an emergency, please specify to the operator, the service area in which the emergency has occurred.

Submitted by:	Jason Dales, Senior Manager B.Sc, WD IV, Infrastructure Operations
	Glenn Harris, Ph.D., R.P.Bio., Senior Manager, Environmental Protection
	Karla Campbell, MBA, BPA, Senior Manager, Salt Spring Island Electoral Area
	Rianna Lachance, BCom, CPA, CA, Senior Manager Financial Services
Concurrence:	Ted Robbins, B. Sc., C. Tech., Chief Administrative Officer

Attachment: 2022 Statement of Operations and Reserve Balances

For questions related to this Annual Report please email saltspring@crd.bc.ca

able 1: 2022 Summary of Rap PARAMETER				ICAL RESUL	TS	CANADIAN GUIDELINES	2012	- 2021 ANA	LYTICAL F	RESULTS
Parameter	Units of	Annual	Samples		nge			Samples		ange
Name	Measure	Median	Analyzed	Minimum	Maximum	<u><</u> = Less than or equal to	Median	Analyzed	Minimum	Maximur
D means Not Detected by analytical m		modian	7 thaiy 2 ou		THEORETT		modian	7 many 2 o a		TTRACTURE
z means net zetestea zy analytica	51104 4004	Dhy	reical Da	arameter	e/Biolog	ical				
Obligation		1,			3/Diolog	ICai	0.000	45	.0.07	50.0
Chlorophyll a	ug/L	20		d in 2022	0.4	445.40	0.289	15	< 0.27	56.3
Colour, True	TCU	22	11	< 2	34	≤ 15 AO	22.5	32	14	34
Conductivity @ 25C	uS/cm		Last analyz	zed in 2011						
Hardness as CaCO ₃	mg/L	34.25	4	30	34.8	No Guideline Required	34.7	26	28.9	61.3
-11	-1111-4-		4	0.5	0.5	7040540	7.405	24	0.0	7.50
pH	pH Units	6.5 5.3	1 4	6.5	6.5 5.4	7.0-10.5 AO	7.185 5.325	34	6.2	7.59
Carbon, total organic Turbidity	mg/L NTU		12	5.1 0.2	4.9		0.52	28 33	3.92 0.2	7 1.7
· · · · · · · · · · · · · · · · · · ·	Degrees C	0.575 8.25	18	5.5	4.9 19		13.6	97	5.5	19.5
Water Temperature	Degrees C	0.25	10	5.5	19		13.0	91	5.5	19.5
			NA! 1	: D	4					
			Micror	oial Parar	meters					
Indicator Bacter	ia									
								'		
Coliform, Total	CFU/100 mL	11.5	12	< 1	410		79	20	1	3200
E. coli	CFU/100 mL	<1	12	< 1	2		< 1	35	< 1	< 10
Hetero. Plate Count, 7 day	CFU/1 mL		Not teste	d in 2022			376	16	124	1504
· •										
Parasites						No MAC Established				
Cryptosporidium, Total oocysts	oocysts/100 L	<1	2	<1	<1	Zero detection desirable	< 1	21	< 1	2.8
Giardia , Total cysts	cysts/100 L	<1	2	<1	<1	Zero detection desirable	< 1	21	< 1	1.74
Crarara, retaine, peter	0,010,100 2		_			20.0 40.000.011 40011 40011				
Algal Toxins										
Algai Toxillo										
Total Microcystins	ug/L		Last analy	zed in 2011		1.5 MAC				
Total Microcystilis	J ug/L		Last allaly	zeu III 2011		1.5 IVAC				
				NA - 4 - 1 -						
				Metals						
Aluminum	ug/L as Al	21.65	4	7.1	86.4	2900 MAC / 100 OG	24.7	26	5.5	4600
Antimony	ug/L as Sb	< 0.5	4	< 0.5	< 0.5	6 MAC	< 0.5	26	< 0.5	0.602
Arsenic	ug/L as As	0.275	4	0.21	0.28	10 MAC	0.255	26	0.2	0.82
Barium	ug/L as Ba	6.45	4	6.1	6.8	100 MAC	6.6	26	5.5	< 9
Beryllium	ug/L as Be	< 0.1	4	< 0.1	< 0.1		< 0.1	26	< 0.1	< 3
Bismuth	ug/L as Bi	< 1	4	< 1	< 1		< 1	20	< 1	< 1
Boron	ug/L as B	< 50	4	< 50	< 50	5000 MAC	< 50	26	< 50	648
Cadmium	ug/L as Cd	< 0.01	4	< 0.01	< 0.01	5 MAC	< 0.01	26	< 0.01	0.2
Calcium	mg/L as Ca	10.95	4	9.51	11.2	No Guideline Required	11.2	26	9.2	17.5
Chromium	ug/L as Cr	< 1	4	< 1	< 1	50 MAC	< 1	26	< 1	< 10
Cobalt	ug/L as Co	< 0.2	4	< 0.2	< 0.2		< 0.2	26	< 0.2	< 20
Copper	ug/L as Cu	8.325	4	8.13	12.6	2000 MAC / ≤ 1000 AO	< 8	26	5.92	55
Iron	ug/L as Fe	120.5	4	83.6	285	≤ 300 AO	65.25	26	< 10	157
Lead	ug/L as Pb	0.355	4	0.28	0.51	5 MAC	0.28	1	0.28	0.28
Lithium	ug/L as Li	< 2	4	< 2	< 2	-	< 2	1	< 2	< 2
Magnesium	mg/L as Mg	1.655	4	1.53	1.71	No Guideline Required	1.645	26	1.44	4.28
Manganese	ug/L as Mn	12.6	4	7.5	25.7	120 MAC / ≤ 20 AO	5.65	26	1.1	48.4
Molybdenum	ug/L as Mo	<1	4	< 1	< 1	,	< 1	26	< 1	28
Nickel	ug/L as Ni	2.05	4	< 1	4.2		< 1	26	< 1	< 50
Potassium	mg/L as K	0.5735	4	0.497	0.652		0.5565	26	0.032	0.709
Selenium	ug/L as Se	< 0.1	4	< 0.1	< 0.1	50 MAC	< 0.1	25	< 0.1	< 500
Silicon	ug/L as Si	2700	4	1670	3670		2015	26	2.48	10800
Silver	ug/L as Ag	< 0.02	4	< 0.02	< 0.02	No Guideline Required	< 0.02	26	< 0.02	< 10
Sodium	mg/L as Na	5.08	4	4.72	5.44	≤ 200 AO	5.425	26	3.98	9.66
Sulphur	mg/L as S	< 3	4	< 3	< 3		< 3	20	< 3	< 3
Strontium	ug/L as Sr	29.65	4	26.5	33.2	7000 MAC	31.75	26	25	57
Tin	ug/L as Sn	< 5	4	< 5	< 5	. 000 148 10	< 5	25	< 5	< 20
	ug/L as TI	< 0.01	4	< 0.01	< 0.01		< 0.01	20	< 0.01	< 0.05
Inalliim	ug/L as Ti	< 5	4	< 5	< 5		< 5	26	< 5	< 10
Thallium Titanium	. uu/∟ a∋ 11	٠,٠	-			20 MAC				< 0.1
Titanium		< 0.1	4	< () 1	< (1 1					
Titanium Uranium	ug/L as U	< 0.1	4	< 0.1	< 0.1	20 WAC	< 0.1	20	< 0.1	
Titanium		< 0.1 < 5 14.45	4 4	< 0.1 < 5 13.6	< 0.1 < 5 15.2	≥0 WAC ≤ 5000 AO	< 5 13.5	26 26	< 0.1 < 5 < 1	< 10 297

PARAMETER	Treated Water T		•							
	T			CAL RESUL		CANADIAN GUIDELINES			21 RESULTS	
Parameter Name	Units of Measure	Annual Median	Samples	Rar Min.	nge Max.	≤ = Less than or equal to	Median	Samples Analyzed	Minimum	ange Maximu
means Not Detected by analytic		iviedian	Analyzed	IVIII I.	iviax.		Median	Analyzeu	Willimum	IVIAXIITIU
Theatis Not Detected by analytic	ai metrioù useu]	Phys	sical Para	ameters				ļ,	
Carbon, Total Organic	mg/L as C	2.2	4	1.9	2.4		2.3	39	0.23	4.6
Colour, True	TCU	< 2	11	< 2	3	≤ 15 AO	1.35	14	< 2	23
Hardness as CaCO ₃	mg/L	33.05	4	29.5	34.5	No Guideline Required	33.3	17	28.8	46.7
pH	pH units	6.8	1	6.8	6.8	7.0-10.5 AO	6.9	34	6.1	7.76
Turbidity	NTU Dograda C	< 0.14	15	0.1	0.2 19.5	1 MAC and ≤ 5 AO	< 0.14	163	0.06	4.75
Water Temperature	Degress C	7.5	141	4	19.5		11	2603	0.5	24
			Micro	bial Par	ameters	•				
Indicator Bact	eria				1					
Coliform, Total	CFU/100 mL	<1	75	< 1	< 1	0 MAC	< 1	574	< 1	9
E. coli	CFU/100 mL	<1	75	<1	< 1	0 MAC	< 1	574	< 1	<1
Hetero. Plate Count, 7 day	CFU/1 mL		Not teste			No Guideline Required	< 10	40	< 10	110
riotero: riato dount, r day	0.0,1.112		110110010			, no calacimie riequilea				
Algal Toxin	s									
Total Microcystins	ug/L		Last analyz	zed in 2011		1.5 MAC				
				lainfa at						
Disinfectant	<u> </u>		L	Disinfect	ants					
Chlorine, Free Residual	mg/L as Cl2	0.79	141	0.27	2.1	No Guideline Required	0.64	2788	0.16	2.43
Chlorine, Total Residual	mg/L as Cl ₂	0.96	139	0.39	2.204	No Guideline Required	0.77	2608	0.2	2.24
	ļ.		Disinfe	ction By	-Produc					
			Diomino	ouen by	Tiodac					
Trihalomethanes	(THMs)									
	,									
Bromodichloromethane	ug/L	11	4	8	12		12.9	38	8.5	24
Bromoform	ug/L	< 1	4	<1	< 1		< 1	38	< 0.1	< 1
Chloroform	ug/L	43	4	32	46		48.5	38	27	130
Chlorodibromomethane	ug/L	1.5	4	1	1.8	400 140 0	1.5	38	<0.1	5.46
Total Trihalomethanes	ug/L	55.5	4	41	61	100 MAC	66.85	38	38.8	160
HAA5	ug/L		Not teste	d in 2022			28.6	9	5.1	44
				Metals	<u> </u>					
				Wietais						
Aluminum	ug/L as AI	12.95	4	8.1	15.7	2900 MAC / 100 OG	12.05	18	7.3	228
Antimony	ug/L as Sb	< 0.5	4	< 0.5	< 0.5	6 MAC	< 0.5	17	< 0.5	< 0.5
Arsenic	un/l as Δs	0.11					0.47			
Arsenic	ug/L as As		4	< 0.1	0.2	10 MAC	0.17	17	<0.1	0.837
Barium	ug/L as Ba	6.05	4	5.5	6.4	10 MAC 100 MAC	6.3	17	5.2	< 9
Barium Beryllium	ug/L as Ba ug/L as Be	< 0.1	4	5.5 < 0.1	6.4 < 0.1		6.3 < 0.1	17 17	5.2 < 0.1	< 9 < 3
Barium Beryllium Bismuth	ug/L as Ba ug/L as Be ug/L as Bi	< 0.1 < 1	4 4 4	5.5 < 0.1 < 1	6.4 < 0.1 < 1	100 MAC	6.3 < 0.1 < 1	17 17 12	5.2 < 0.1 < 1	< 9 < 3 < 1
Barium Beryllium Bismuth Boron	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B	< 0.1 < 1 < 50	4 4 4 4	5.5 < 0.1 < 1 < 50	6.4 < 0.1 < 1 < 50	100 MAC 5000 MAC	6.3 < 0.1 < 1 < 50	17 17 12 17	5.2 < 0.1 < 1 < 50	< 9 < 3 < 1 161
Barium Beryllium Bismuth Boron Cadmium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd	< 0.1 < 1 < 50 < 0.01	4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01	6.4 < 0.1 < 1 < 50 < 0.01	100 MAC 5000 MAC 5 MAC	6.3 < 0.1 < 1 < 50 < 0.01	17 17 12 17 17	5.2 < 0.1 < 1 < 50 < 0.01	< 9 < 3 < 1 161 0.352
Barium Beryllium Bismuth Boron Cadmium Calcium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca	< 0.1 < 1 < 50 < 0.01 10.55	4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34	6.4 < 0.1 < 1 < 50 < 0.01 11.1	100 MAC 5000 MAC 5 MAC No Guideline Required	6.3 < 0.1 < 1 < 50 < 0.01 10.8	17 17 12 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2	< 9 < 3 < 1 161 0.352 15.6
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Ca	< 0.1 < 1 < 50 < 0.01 10.55 < 1	4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1	100 MAC 5000 MAC 5 MAC	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1	17 17 12 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1	< 9 < 3 < 1 161 0.352 15.6 < 10
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Cr	< 0.1 < 1 < 50 < 0.01 10.55 < 1 < 0.2	4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2	17 17 12 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Ca ug/L as Cr ug/L as Co ug/L as Co	< 0.1 < 1 < 50 < 0.01 10.55 < 1 < 0.2 34.25	4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 15	17 17 12 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Co ug/L as Cu	< 0.1 < 1 < 50 < 0.01 10.55 < 1 < 0.2 34.25 < 5	4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5	5000 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 15 < 5	17 17 12 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Cu	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15	4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 15 < 5 < 0.5	17 17 12 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47 2.43
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li	< 0.1 < 1 < 50 < 0.01 10.55 < 1 < 0.2 34.25 < 5 1.15 < 2	4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 15 < 5 < 0.5 < 2	17 17 12 17 17 17 17 17 17 17 17 16 5	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2	<pre>< 9 < 3 < 1 161 0.355 15.6 < 10 < 0.2 130 47 2.43 < 2</pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Cu ug/L as Cu ug/L as Fe ug/L as Li mg/L as Mg	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615	4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 15 < 5 < 0.5 < 2 1.57	17 17 12 17 17 17 17 17 17 17 17 17 16 5	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886	<pre>< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47 2.43 < 2 1.85</pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Cr ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Fi ug/L as Li mg/L as Mn	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 < 1.45 < 2 1.67	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC	6.3 < 0.1 < 1 < 50 < 0.01 10.8 < 1 < 0.2 15 < 0.5 < 2 1.57 < 1	17 17 12 17 17 17 17 17 17 17 16 5 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1	<pre><9 <3 <1 161 0.352 15.6 <10 <0.2 130 47 2.43 <2 1.85 <4</pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Li mg/L as Mg ug/L as Mo	<0.1 <10 <50 <0.01 10.55 <11 <0.2 34.25 <5 1.15 <2 1.615 <1 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 - 2 1.67 1.4 < 1	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <1.57 <1 <1	17 17 12 17 17 17 17 17 17 17 16 5 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1	<pre><9 <3 <1 161 0.352 15.6 <10 <0.2 130 47 2.43 <2 1.85 <4 <1</pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Bo ug/L as Mg ug/L as Mo ug/L as Mo	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 < 1	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	17 17 12 17 17 17 17 17 17 17 16 5 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47 2.43 < 2 < 2 < 4 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as B ug/L as Cd mg/L as Cc mg/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mp ug/L as Mo ug/L as Mo ug/L as Ni mg/L as K	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 <1 <1 <51 <1 <51 <51 <51 <51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 < 1 0.493	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 < 1 0.595	5000 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 <1 <1 <1 <1 <55 <0.5 <2 1.57 <1 <1 <1 <55 <0.5 <2 1.57 <1 <1 <55 <0.5 <2 1.57 <1 <55 <0.5 <2 1.57 <1 <55 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.03	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 < 2.43 < 2 < 1.85 < 4 < 1 < 1 < 0.62 < 1 < 1 < 0.62 < 1 < 1 < 0.62 < 1 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 < 0.62 <
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Cd mg/L as Cr ug/L as Cr ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mg ug/L as Mn ug/L as Mo ug/L as Ki ug/L as K	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 <0.57 <0.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 < 1 0.595 < 0.1	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 <1 <0.537 <0.1	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.01	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47 2.43 < 2 1.85 < 4 < 1 < 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Ho ug/L as Mo ug/L as Mo ug/L as Ko	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1 1590	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 0.595 < 0.1 3390	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 0.537 <0.1 986	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.01	<pre>< 9 < 3 < 1 1661 0.355 15.6 < 100 < 0.2 130 47 2.43 < 2 1.85 < 4 < 1 < 1 0.622 < 0.7 986</pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Mn ug/L as Mn ug/L as Ni mg/L as Ni mg/L as Se ug/L as Se ug/L as Si ug/L as Ag	<0.1 <1 <50 <0.01 10.55 <1 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 < 41 < 41 < 41 < 41 < 41 < 41	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 0.595 < 0.1 3390 < 0.02	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 0.537 <0.1 986 <0.02	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.01 986 < 0.002	< 9 < 3 < 1 161 163 < 10 < 0.2 < 130 < 47 < 2.43 < 2.43 < 2.4 < 1.85 < 4 < 1 < 1 < 0.6 < 9.6 < 9.0 < 986 < 0.0
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Li mg/L as Mo ug/L as Ni mg/L as K ug/L as Se ug/L as Se ug/L as Si ug/L as Ag mg/L as Ag	<0.1 <10 <50 <0.01 10.55 <11 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 21 2425 <0.02 6.945	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1 1590 < 0.02 6.32	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 < 1 0.595 < 0.01 3390 < 0.02 7.93	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 <1 <0.537 <0.1 <986 <0.02 6.99	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.02 4 8 < 5 < 0.01 9.02 < 8 < 5 < 0.01 < 0.02 < 8 < 1 < 0.02 < 1 < 0.03 <	< 9 < 3 < 1 161 0.356 < 10 < 0.2 130 47 2.43 < 2 < 2 1.85 < 4 < 1 < 0.1 < 986 < 0.0 7.64
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Fb ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Si ug/L as Si ug/L as Si ug/L as Si	<0.1 <10 <50 <0.01 10.55 <11 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 0.57 <0.1 2425 <0.02 6.945 <3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1 1590 < 0.02 6.32 < 3	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 < 5.95 < 0.1 3390 < 0.02 7.93 < 3	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required 120 MAC / ≤ 20 AO	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <1 <1 <1 <1 <57 <1 <1 <57 <0.5 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.03 < 0.1 9.2 < 8 < 5 < 0.23 < 2 0.086 < 1 < 1 < 1 < 0.03 < 1 < 1 < 1 < 1 < 0.00 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47 2.43 < 4 < 1 < 1 < 0.1 < 0.1 < 90.0 < 7.64 < 3
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Bi ug/L as Mg ug/L as Mn ug/L as Mo ug/L as Ni mg/L as K ug/L as Se ug/L as Se ug/L as Si ug/L as Sa ug/L as Sa	<0.1 <10 <10 <0.01 <10 <0.01 <10.05 <11 <0.02 34.25 <5 1.15 <2 1.615 <1 <1 <1 <1 <0.057 <0.01 2425 <0.002 6.945 <3 28.95	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1 1590 < 0.02 6.32 < 3 26.3	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 < 1 0.595 < 0.1 3390 < 0.02 7.93 < 3 32.8	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <1 <1 <1 0.537 <0.1 986 <0.02 6.99 <3 30	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 5.0 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.1 986 < 0.02 4.56 < 3 30	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 < 130 47 < 2.43 < 2 < 1.85 < 4 < 1 < 0.1 < 986 < 0.64 < 3 < 3 < 3 < 3 < 3 < 9 < 7 < 64 < 7 < 7 < 64 < 7 < 7 < 64 < 7 < 7 < 64 < 7 < 7 < 64 < 8 < 7 < 64 < 8 < 7 < 64 < 8 < 8 < 9 < 7 < 64 < 3 < 3 < 30 < 8 < 9 < 8 < 9 < 8 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 <
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Cd ug/L as Cc ug/L as Co ug/L as Co ug/L as Co ug/L as Fe ug/L as Fe ug/L as Mo ug/L as Mo ug/L as Mi mg/L as K ug/L as Si ug/L as Si ug/L as Ag mg/L as Si ug/L as Si	<0.1 <10 <50 <0.01 <10 <50 <0.01 <10.55 <11 <0.2 34.25 <5 1.15 <2 1.615 <1 <1 <1 0.57 <0.1 2425 <0.02 6.945 <3 28.95 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1 1590 < 0.02 6.32 < 3 26.3 < 5	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 0.595 < 0.1 3390 < 0.02 7.93 < 3 32.8 < 5	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required 120 MAC / ≤ 20 AO	6.3 <0.1 <10 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 0.537 <0.1 986 <0.02 6.99 <3 30 <5	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.1 986 < 0.002 4.56 < 3 30 < 5	< 9 < 3 < 1 161 0.352 15.6 < 10 < 0.2 130 47 2.43 < 2 1.85 < 4 < 1 < 0.1 < 986 < 0.0 7.64 < 30 < 30 < 20 < 20
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Cd mg/L as Cd mg/L as Co ug/L as Co ug/L as Co ug/L as Cu ug/L as Fe ug/L as Pb ug/L as Bi ug/L as Mn ug/L as Mn ug/L as Mi mg/L as Si ug/L as Si ug/L as Ag mg/L as Na mg/L as Si ug/L as Si ug/L as Si ug/L as Sr ug/L as Sr ug/L as Sr	<0.1 <10.55 <10.2 34.25 <5 1.15 <2 1.615 <1 <1.57 <0.1 2425 <0.02 6.945 <3 28.95 <5 <0.01	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 0.493 < 0.1 1590 < 0.02 6.32 < 3 26.3 < 5 < 0.01	6.4 < 0.1 < 1 < 50 < 0.01 11.1 < 1 < 0.2 37.1 < 5 1.45 < 2 1.67 1.4 < 1 0.595 < 0.1 3390 < 0.02 7.93 < 3 32.8 < 5 < 0.01	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required 120 MAC / ≤ 20 AO	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 0.537 <0.1 986 <0.02 6.99 <3 3 0 <5 <0.01	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 0.03 < 0.1 986 < 0.02 4.5 0.03 < 0.01 < 0.03 < 0.01 < 0.00 <	<pre><9 <3 <1 1661 10.352 15.6 <100 <0.2 130 47 2.433 <22 1.85 <44 <1 <10.622 <0.1 986 <0.0 7.644 <3 3 00 <20 <0.0 <0.0 </pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin Thallium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Se ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Ni mg/L as Se ug/L as Si ug/L as Na mg/L as Si ug/L as Si	<0.1 <10.55 <10.2 34.25 <5 1.15 <2 1.615 <1 <1.57 <0.1 2425 <0.02 6.945 <3 28.95 <5 <0.01 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 < 1 0.493 < 0.01 1590 < 0.02 6.32 < 3 26.3 < 5 < 0.001 < 5	6.4 <0.1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 <0.537 <0.1 986 <0.02 6.99 <3 30 <5 <0.01 <5	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.03 < 0.01 986 < 0.02 4.56 < 3 30 < 5 < 0.01 < 5	<pre><9 <3 <1 161 0.352 15.6 <10 <0.2 130 47 2.43 <22 1.85 <4 <1 <1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.</pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin Thallium Titanium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Se ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Se ug/L as Si ug/L as Si ug/L as Si ug/L as Sr ug/L as STI ug/L as TI	<0.1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 <0.1 <1 <50 <0.01 <1 <50 <0.01 9.34 <1 <0.2 25.1 <5 1.09 <2 1.51 <1 <1 <1 <41 <41 <41 <41 <493 <0.1 1590 <0.02 6.32 <3 26.3 <5 <0.01 <5 <0.01	6.4 <0.1 <10	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required 120 MAC / ≤ 20 AO	6.3 <0.1 <10 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 <1 0.537 <0.1 986 <0.02 6.99 <3 30 <5 <0.01 <5 <0.01	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.02 < 8 < 5 < 0.01 < 7 < 0.01 < 7 < 0.03 < 0.01 < 986 < 0.002 < 4.56 < 3 30 < 5 < 0.01 < 5 < 0.01	<pre><9 <3 <1 161 0.355 15.6 <10 <0.2 130 47 2.43 <22 1.85 <4 <1 <1 <10.62² <0.1 986 <0.0 7.64 <3 3 0 <20 <0.0 <10 <0.1 </pre>
Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Sulphur Strontium Tin Thallium	ug/L as Ba ug/L as Be ug/L as Bi ug/L as Bi ug/L as Ca ug/L as Ca ug/L as Co ug/L as Se ug/L as Mo ug/L as Mo ug/L as Mo ug/L as Ni mg/L as Ni mg/L as Se ug/L as Si ug/L as Na mg/L as Si ug/L as Si	<0.1 <10.55 <10.2 34.25 <5 1.15 <2 1.615 <1 <1.57 <0.1 2425 <0.02 6.945 <3 28.95 <5 <0.01 <5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5 < 0.1 < 1 < 50 < 0.01 < 1 < 50 < 0.01 9.34 < 1 < 0.2 25.1 < 5 1.09 < 2 1.51 < 1 < 1 < 1 0.493 < 0.01 1590 < 0.02 6.32 < 3 26.3 < 5 < 0.001 < 5	6.4 <0.1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100 MAC 5000 MAC 5 MAC No Guideline Required 50 MAC 2000 MAC / ≤ 1000 AO ≤ 300 AO 5 MAC No Guideline Required 120 MAC / ≤ 20 AO 50 MAC No Guideline Required ≤ 200 AO 7000 MAC	6.3 <0.1 <1 <50 <0.01 10.8 <1 <0.2 15 <5 <0.5 <2 1.57 <1 <1 <0.537 <0.1 986 <0.02 6.99 <3 30 <5 <0.01 <5	17 17 12 17 17 17 17 17 17 17 16 5 17 17 17 17 17 17 17 17 17 17 17 17 17	5.2 < 0.1 < 1 < 50 < 0.01 9.2 < 1 < 0.2 < 8 < 5 0.23 < 2 0.886 < 1 < 1 < 1 < 0.03 < 0.01 986 < 0.02 4.56 < 3 30 < 5 < 0.01 < 5	<pre><9 <3 <1 1661 10.352 15.6 <100 <0.2 130 47 2.433 <22 1.85 <44 <1 <10.622 <0.1 986 <0.0 7.644 <3 3 00 <20 <0.0 <0.0 </pre>

CAPITAL REGIONAL DISTRICT

FULFORD WATER Statement of Operations (Unaudited) For the Year Ended December 31, 2022

	2022	2021
Revenue		
Transfers from government	47,500	37,500
User Charges	140,341	133,770
Sale - Water	22,296	18,693
Other revenue from own sources:		
Interest earnings	128	40
Transfer from Operating Reserve	20,000	5,038
Other revenue	674	963
Total Revenue	230,939	196,004
Expenses		
General government services	8,241	7,539
Contract for Services	83,584	76,600
CRD Labour and Operating costs	37,679	35,486
Debt Servicing Costs	14,213	14,182
Other expenses	51,303	41,197
Total Expenses	195,020	175,004
Net revenue (expenses)	35,919	21,000
Transfers to own funds:		
Capital Reserve Fund	25,319	21,000
Operating Reserve Fund	10,600	,000
Annual surplus/(deficit)	_	-
Accumulated surplus/(deficit), beginning of year	-	-
Accumulated surplus/(deficit), end of year	\$ -	-

CAPITAL REGIONAL DISTRICT

FULFORD WATER Statement of Reserve Balances (Unaudited) For the Year Ended December 31, 2022

	Capital Reserve		
	2022	2021	
Beginning Balance	85,499	73,402	
Transfer from Operating Budget	25,319	21,000	
Transfer from Completed Capital Projects	8,979	9,902	
Transfer to Capital Project	(90,500)	(20,000)	
Interest Income	287	1,195	
Ending Balance	29,584	85,499	

	Operating Reserve		
	2022	2021	
Beginning Balance	13,576	18,256	
Transfer from Operating Budget Transfer to Operating Budget Interest Income	10,600 (20,000) 227	- (5,038) 358	
Ending Balance	4,404	13,576	