Westside Select Committee

Interim Findings Option Sets Costing Analysis

September 29, 2015

Background

- >20 Sites and 9 Option Sets
 - Examine 4 Plant & 1 Plant Option Sets
 - Insights on 2 Plant Option
- Deeper Study in Feasibility and Costing
 - Wastewater, Residual Solids Treatment, Sites
 - Target Market Resource Recovery
 - Order of Magnitude Costing

Background

 Test the preliminary criteria and receive direction on how to enhance

 Compare costing, technology options and option set evaluations to confirm project outcomes

Feasibility and Costing Elements

Design Criteria •Public Input & Levels of Service •Regulations + Standards

Resource Recovery

Target Markets

•Customers + End Use •Growth and Partnerships

Resource Recovery Target Markets

•Customers + End Use •Growth and Partnerships

Target Markets

- Long-term Demands & Revenues
- Technology Footprint
- Energy Balance
- Ability to Support community Amenities
- Scope of Infrastructure Needs
- Synergy with Public Services

Water Reuse

- Park Irrigation
- Indirect Potable Reuse e.g. Toilet
- Aquifer Recharge
- New Markets: Streams, Greenhouses

Solids and Heat Recovery

- Historic: Land Apply, Landfill
- Industrial Partnership e.g. fuel, kiln, fertilizer
- Thermal e.g. gasification
- Incinerate
- Low-Grade Heat

Water Reuse

- Park Irrigation
- Indirect Potable Reuse e.g. Toilet
- Aquifer Recharge
- New Markets: Streams, Greenhouses

Target Markets

Ingredients for Service Effectiveness

- Clustered customers with high demand
- Clear policy or incentives for use
- Irrigation provides high-demand, ease of application (local challenges)
- Aquifer recharge feasibility
- Toilets (indoor substitution) @ Growth
- Potential for new markets synergy with regional/local needs e.g. agriculture
- Stream augmentation challenges

svstems

Solids and Heat Recovery

- Historic: Land Apply, Landfill
- Industrial Partnership e.g. fuel, kiln, fertilizer
- Thermal e.g. gasification
- Incinerate
- Low-Grade Heat

Target Markets

Ingredients for Service Effectiveness

- Committed customer(s) with specified product quality
- Value of biogas depends on fuel it is offsetting
- Energy Utilization Technologies Must Balance Energy Uses and Cost
- Synergies/Partnerships with other services
- Integrate with other waste to leverage energy resources

Design Criteria

- Design Criteria translate the goals and objectives of this project into node/site applications
- Connect public input into engineering outcomes
- Four types of applications across the Westside
- Criteria narrow the range of technologies

Design Criteria •Public Input & Levels of Service •Regulations + Standards

Design Criteria

Guiding Technical Criteria

- Leverage existing infrastructure and minimize operating costs
- Look for long-term revenues and resource demands
- Look to integrate with other public services and community building e.g. waste streams
- Include capacity phasing
- Site, system and technology resiliency
- Carbon, energy and footprint considerations
- Provide for positive and safe public interaction

Establishes the framework for more detailed, instructive engineering criteria.

Life-Cycle Costing •Option Sets •Capital + Operating •Revenues

Costing Factors

• Order of magnitude suits level of detail and saves room for optimization

Cost Breakdown

- •Recent US and Canadian Projects
- •Operating Costs to come
- •Revenues to be developed
- •Factors involved:
- Contingency for design and construction risks
- ✓ US currency conversion
- ✓ Contractor profit
- Inflation and further escalation
- Service administration

Escalation Considerations

- •Happens in every industry
- •Changes in NA economy 2010-2015
- •Us Currency Exchange
- •Labor Rate trends
- •Different sites and infrastructure needs
- •Supply-demand trends for wide variety of materials and products

Wastewater Technologies

Solids Recovery Technologies

Aerobic

Anaerobic

Gasification

Design Criteria *buik: hpust & Levels of Service *tegulation + Standards	Wastewater Treatment (Liquids)
	Suitable Technologies &
×.>	Option Sets
Resource Recovery	Life-Cycle
Target Markets	Costing
•Growth and Partnerships	Capital + Operating
	•Revenues

Water + Energy Balance

25% Dry Solids 75% Water

1 kg of solids

1 kg dry solids 3 kg of water 4,000 Kcal

4,000 Kcal/kg

-1,800 Kcal/kg

4 kg of sludge

-5,400 Kcal

NET Energy

-1,400 Kcal

Design Criteria *Julic Input & Levels of Service *egudations + Stondards	Wattewater Treatment Cliquids) Solids Teatment Suitable Technologies & Option Sets
Resource Recovery Target Markets -«customers » End Use «Growth and Partnerships	Contraction Set Contraction Set Contra

Water + Energy Balance

85% Dry Solids 15% Water 4,000 Kcal/kg -1,800 Kcal/kg

1 kg of solids

1.18 kg of sludge

1 kg dry solids4,000 Kcal0.18 kg of water-324 Kcal

NET Energy 3,676 Kcal

"Tipping Points"

Water + Energy Balance

"Tipping Points"

Water + Energy Balance

"Tipping Points"

Water + Energy Balance

Option Sets

- >20 Sites and 9 Option Sets
 - Examine 4 Plant & 1 Plant Option Sets
 - Insights on 2 Plant Option
 - Order of Magnitude Costing

4 Plant Option Set

Advantages

- Scale flows and footprint to suit communities
- Stronger alignment with potential water reuse
 e.g. more effluent @
 tertiary quality
- Utilizes some existing infrastructure
- Esquimalt facility close to outfall
- Ability to phase in capacity for/at growth

Challenges

 Increases reuse but requires extensive new infrastructure

•Multiple truck patterns

•Reinvestment into Craigflower PS

•Esquimalt site challenged to accommodate liquids & solids

•Challenges in *minimizing life cycle costs*

1 Plant Option Set

Advantages

- Site suits significant capital investment
- Some local opportunities for water reuse
- Lowest infrastructure needs
- Opportunity for comprehensive 'green' development
- Lowest cost option / revenues virtually unchanged

Challenges

- Modest reuse opportunities
- Concentrates capacity in one location
- Meets effluent regulations yet less flow to tertiary levels

Option Set Reflections

How To?

- Expand and innovate water reuse without extensive infrastructure
- Phase capacity with growth @ growth
- Better address project goals
- Distribute facilities without substantial effect on overall cost

Encourages a scaled-back two-plant option that:

- ✓ Adjacent new growth
- ✓ Adjacent known reuse opportunities
- ✓ Does not need new outfall
- ✓ Allows for expansion with growth
- ✓ Lowers costs
- \checkmark Westside solution that considers public input and aspirations

2 Plant Option Set

Advantages

- Includes advantages of 1 Plant Option set
- Includes innovative reuse in aquifer recharge
- Addresses 1 Plant Challenges
- ✓ Expands water reuse opportunities
- ✓ Distributes capacity where there is growth
- ✓ Increases amount of tertiary effluent

• Note: some loss of economies of scale

Setting Direction

- 1. Consider reporting and analysis to focus on the 1-plant and 2-plant option sets
- 2. Continue to assess costs for secondary versus tertiary at 1-Plant Option
- *3. Develop potential revenue projections*
- 4. Further assess site feasibility to narrow most preferred

Setting Direction

- 1. Consider aerobic, anaerobic and gasification process costs/revenues
- 2. Evaluate solids technologies (e.g. digestion and gasification) by creating expectations for a response by the private market:
 - ✓ end-product demand
 - ✓ Revenue
 - ✓ synergy with public service
 - ✓ life-cycle cost
 - ✓ overall energy balance
- 3. Costs and infrastructure lower for 1 location @ residual solids recovery
- 4. Select technologies to suit design criteria

Thank You

