APPENDIX I

The Biosolids Emissions Assessment Model (BEAM) was developed by the Canadian Council of Ministers of the Environment (CCME) for use primarily by Canadian biosolids generators.

The model was developed to allow operators, engineers and managers the ability to assess potential greenhouse gas (GHG) emissions from a range of biosolids management scenarios. The model can be used to:

- estimate a programs' GHG emissions, including establishing a baseline;
- compare emissions from different biosolids management scenarios within a program;
- estimate the impacts on GHG emissions resulting from changes in a biosolids management
- understand the factors that have the greatest impact on increasing or reducing GHG emissions.

These types of assessments are especially important for agencies seeking to become "carbon neutral" or better, and for determining the potential financial implications (e.g., costs, carbon credits) of changes to biosolids management strategies based on GHG implications. For information about how to use the tool, please refer to *Biosolids Emissions Assessment Model: User Guide, CCME 2009.*

Acknowledgement

This document is based on work done by SYLVIS Environmental under contract to CCME, as revised by the Biosolids Task Group.

Use of this model shall indicate agreement with the following conditions:

1) This model remains the property of CCME.

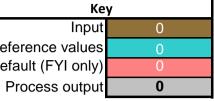
2) Anyone who downloads or uses this model in any way shall not sell it or profit in any manner from its sale, distribution or use.

3) Those who use this model are not authorized to alter it in any way.

4) CCME may not be held liable for any losses that may be incurred directly or indirectly from use of this model. Those who use this model do so at their own risk.

Version 1.1

© 2011 Canadian Council of Ministers of the Environment


Summary of Wastewater Treatment Inputs and CO₂ Equivalent Totals

Jurisdiction:	CRD	
Wastewater Treatment Plant:	Core Area	
Date of calculation:	18/07/2018	updated 5/16/2019 by SYLVIS
Calculations by:	Joshua Frederick	

WWT & Solids Characteristics

Treatment and Solids Characteristics	Inputs
Amount of Wastewater Treated (million liters/day or MLD)	108.00
Amount of Wastewater Treated (m ³ /day)	108,000
Population served by Wastewater Treatment Plant	380,000
Influent BOD ₅ (mg/L)	260
Location (by province)	BC
Weighted GHG Emissions for Power Generation by Province (g/kWh)	11

Ke Input Default from reference values Data used to calculate default (FYI only)

CO₂eq Totals (Mg/year)

Unit Process	Enter "x" for all applicable processes:	Scope 1	Scope 2	Scope 1 & 2	Scope 3	Biomass combustion*	Total
Storage	x	0	16	16	0	NA	16
Conditioning/Thickening	x	0	1	1	738	-	740
Aerobic Digestion		NA	NA	NA	NA	NA	NA
Anaerobic Digestion	x	26	27	53	0	3,202	53
Dewatering	X	0	7	7	927	-	934
Thermal Drying	x	103	25	128	0	-	128
Alkaline Stabilization		NA	NA	NA	NA	NA	NA
Composting		NA	NA	NA	NA	NA	NA
Landfill Disposal		NA	NA	NA	NA	NA	NA
Combustion	X	-6,242	15	-6,227	-8	9,386	-6,236
Land Application		NA	NA	NA	NA	NA	NA
Transportation 1	x	122	122	NA	122	NA	122
	TOTALS	-5,991	212	-6,022	1,779	12,589	-4,243

Scope 1 - direct emissions

Scope 2 - purchased electricity, heat, or steam

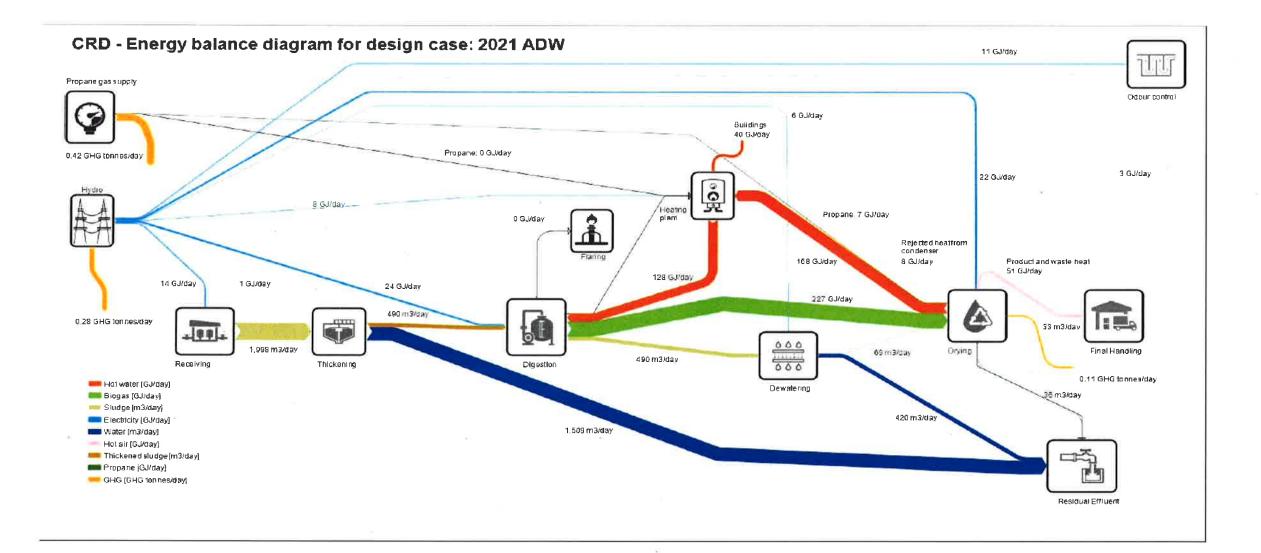
Scope 3 - production of purchased materials and uses of end products

Instructions and Notes

General: Enter data for the wastewater treatment process, as well as the province in which your program's electricity consumption occurs. Complete only those pages of the BEAM that apply to unit processes marked with "x" above. Greenhouse gas emissions, including totals and scope subtotals, for the entire biosolids management program are summarized above. For all calculator sheets enter data starting at the top of each sheet. Use actual data and enter into the green cells whenever possible.

* Biomass combustion emissions are not included in total CO₂ equivalents. See User's Guide for more information.

Storage Prior to Processing


Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Storage Input		
Volume of sludge to unit process (m ³ /day)	2,000	
Mass of BOD ₅ to storage (kg/day)		25,272
Process Options		
Is the storage lagoon or tank aerated with aerators?	yes	no
Is the depth of the lagoon less than 2 meters (on average)?	no	no
Electricity Use		
Electricity use (kWh / day)	3,889	269
CO ₂ emissions from electricity used (Mg/day)	0.043	
Methane Emissions		
CO ₂ emissions equivalents from released CH ₄ (Mg/day)	0.00	

CO ₂ equivalents (Mg/year)	16
Scope 1	0
Scope 2	16
Scope 1 & 2	16
Scope 3	0
Biomass combustion	-

Instructions and Notes

General: Enter data for any form of long-term solids storage, in lagoons or in tanks from which air or gas escapes to the atmosphere.

Кеу	
Input	0
Default from reference values	0
Process output	0

Conditioning/Thickening

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Conditioning / Thickening Input		
Amount of sludge to be thickened (m ³ /day)	2,000	
Solids content of sludge (%)	1.499%	1.0%
Quantity (Mg/day-dry)	29.97	
Type of thickener	other	other
Polymer use (kg/day)	225	150
CO ₂ equivalents in polymer used (Mg/day)	2.0	
Electricity Use		
Electricity Use (kWh/day)	278	147
CO ₂ Emissions from electricity used (Mg/day)	0.003	

CO ₂ equivalents (Mg/year)	740
Scope 1	0
Scope 2	1
Scopes 1 & 2	1
Scope 3	738
Biomass combustion	-

Instructions and Notes

General: Enter data for wastewater solids thickening, and conditioning for thickening (using polymers; ignore other conditioners such as ferric chloride or alum). Do not use this page for dewatering (separate sheet).

	Кеу	
	Input	0
Default from reference	values	0
Process	output	0

Anaerobic Digestion

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Digester Input		
Sludge quantity fed to digestors (m ³ /day)	490	
Average sludge volume in digestors any given day (m ³)	14,000	7,350
VS (%- wet weight)	4.78%	
VS (kg/day) - dry wt.	23,446	
Digester Output		
Sludge quantity (m ³ /day)	490	
VS (%- wet weight)	2.632%	
VS (kg/day) - dry wt.	12,895	
VS destroyed (kg/day) - dry wt.	10,551	
% VS destruction	45%	
Energy Balance		
Biogas Yield (m ³ /day)	9,848	9,496
Methane Yield (m ³ /day)	6,401	6,401
% Biogas Used for Heat	100%	65%
% Biogas Used to Generate Electricity	0%	0%
% Biogas Flared	0%	35%
% Biogas Fugitive Emissions	0%	
Natural gas for heating avoided (m ³ /day)		6,325
Electricity generated (kWh/day)		0
Heating requirements of the digestors (m ³ -natural gas/day)		2,264
Electricity requirements of the digestors (kWh/day)		2,184
Net natural Gas used (m ³ /day)	0	-4,061
Net electricity used (kWh/day)	6,667	2,184
CO ₂ emissions from natural gas (net) used (Mg/day)	0.00	
CO ₂ Emissions from electricity (net) purchased (Mg/day)	0.07	
CO ₂ eq emissions from fugitive methane during combustion (Mg/day)	0.07	0.26
CO ₂ emissions from biomass (biogas) combustion (Mg/day)	8.77	

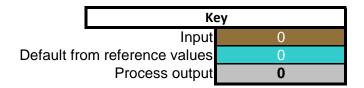
CO ₂ equivalents (Mg/year)	53
Scope 1	26
Scope 2	27
Scopes 1 & 2	53
Scope 3	0
Biomass combustion*	3,202

Instructions and Notes

General: Enter combined data from all anaerobic digesters. Be sure to enter in the green cells actual data from measurements at a facility, if available. Use defaults if necessary, especially when previous data inputs have resulted in a calculated default value.

*Biomass combustion emissions are not included in total CO_2 equivalents.

K	Кеу	
Input	0	
Default from reference values	0	
Data used to calculate default (for information only)	0	
Process output	0	


De-watering

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
De-watering Input		
Amount of sludge to be de-watered (m ³ /day)	490	
Solids content of sludge (%)	3.84%	4.0%
Quantity (Mg/day-dry)	18.8	
Type of de-watering equipment	centrifuge	other
Polymer use (kg/day)	282	94
CO ₂ equivalents in polymers used (Mg/day)	2.5	
Electricity Use		
Energy use (kWh/day)	1,667	1,909
Return centrate pumping energy use (kWh/day)		
Total energy use (kWh/day)	1,667	
CO ₂ emissions from electricity used (Mg/day)	0.019	

CO ₂ equivalents (Mg/year)	934
Scope 1	0
Scope 2	7
Scopes 1 & 2	7
Scope 3	927
Biomass combustion	-

Instructions and Notes

General: Enter combined data for all like dewatering units. If a passive drying system with no polymers is used (e.g. drying beds), either estimate the energy use (in kWh equivalents/day) or assume zero emissions.

Thermal Drying

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Thermal Drying Input		
Quantity (Mg/day-wet)	79.0	
Solids content going in to dryer (%)	23.3%	
Solids content coming out of dryer (%)	94.0%	
Quantity (Mg/day-dry)	18.4	
Energy Balance		
Energy requirements of the drying-evaporating water (BtU/day)		238,060,826
Fuel Use		
Natural gas use (m ³ /day)	183	6,565
CO ₂ emissions from natural gas used (Mg/day)	0.283	
Electricity Use		
Electricity requirements of dryer (kWh/day)	6,111	3,947
CO_2 emissions from electricity used (Mg/yr)	0.07	

CO ₂ equivalents (Mg/year)	128
Scope 1	103
Scope 2	25
Scopes 1 & 2	128
Scope 3	0
Biomass combustion	-

Instructions and Notes

General: Enter data for thermal drying processes (e.g. rotary drum dryers), whether indirectly or directly heated. Enter actual natural gas and electricity use per day, if available.

K	ey
Input	0
Default from reference values	0
Data used to calculate default (for information only)	0
Process output	0

Biosolids Transportation - Truck and BC Ferry emissions

Unit Processes & Inputs	Enter total <u>diesel fuel</u> (L/yr) use for all solids transportation			quested data for	r each destinatio	on							
Transportation input			Destination 1	Destination 2	Destination 3	Destination 4	Destination 5	Destination 6	Destination 7	Destination 8	Destination 9	Destination 10	Total
Sludge/biosolids to this destination (Mg-wet/yr)	NA	NA	7,097.7										
Average biosolids weight per load (Mg-wet)	NA	NA	21										
Vehicle efficiency km/L	. NA	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	
Round trip distance (km) one-way if backhaul used	I NA	0											
Fuel usage (L/yr)		0	46176	0	0	0	0	0	0	0	0	0	46,176
Percent of fuel usage that is biodiesel (%)		0%	5%										
Subtotal - CO ₂ equivalents (Mg/yr')	0.0	0.0	121.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	122

CO ₂ equivalents (Mg/year)	121.6
Scope 1	121.6
Scope 2	NA
Scopes 1 & 2	121.6
Scope 3	NA
Biomass combustion	6.4

2.1 default average truck mileage (km/L, heavy-duty diesel)2.1 truck mileage (km/L, heavy-duty diesel)

Instructions and Notes

General: Include all transportation of wastewater solids and biosolids, including within the wastewater treatment plant, to processing and storage facilities, and to final end use and disposal sites. Do not include diesel fuel used for applying biosolids to land or managing it in a landfill. If biodiesel or other non-fossil fuel is used, enter the percentage used in the appropriate row.

	Кеу		
-	Input	0	
Default from r	eference values	0	
	Process output	0	

Combustion (incineration, thermal oxidation)

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Solids Input (to incinerator)		
Quantity (Mg/day-wet)	19.4	
Solids content (%)	94.0%	
Quantity (Mg/day-dry)	18.3	
Is sludge digested prior to incineration?	yes	no
Total nitrogen (%-dry weight)	3.0%	5.0%
Total phosphorus (%-dry weight)	1.9%	1.9%
TVS(%-dry weight) Type of incinerator	68.5% Fluidized Bed	51.0% Fluidized Bed
Recovered energy to electricity (%)	0%	T Iuluizeu Deu
Recovered energy as heat (%)	100%	
Disposition of ash - Is it used to replace phosphorus fertilizer or in cement or brick?	cement	none
Is a urea-based selective noncatalytic reduction emissions system being used?	no	no
Average high (freeboard) temperature of combustion (°C)	850	850
Energy Balance		
Energy requirements of the incinerator-evaporating water (BtU/day)		4,976,372
Energy potential of sludge (Btu/day)		261,609,719
Fuel Use - (Coal Replacement)		
Coal needed to evaporate water in sludge (kg/day)		199
Avoided coal use from recovered energy (kg/day)		10,483
Net coal used (kg/day)	-10,283	-10,283
CO ₂ emissions from coal used (Mg/day)	-21.29	
Electricity Use		
Electricity requirements of incinerator (kWh/day)		3,656
Net Electricity used (kWh/day)	3,656	3,656
CO ₂ emissions from electricity used (Mg/day)	0.04	
Electricity Generation		
Electricity generated (kWh/day)	0	0
CO ₂ emissions from electricity generated (Mg/day) - provincial GHG factor	0.00	
CO ₂ from electricity generated (Mg/day) - natural gas combustion factor	0.00	
Methane emissions		
CO ₂ emissions equivalents from released methane (Mg/day)	0.02	
Methane emissions avoidance from coal replacement (Mg/day)		
Nitrous Oxide Emissions		
N ₂ O emitted during incineration (Mg/day)	0.035	0.035
N ₂ O emission adjustment for SNCR based on urea (Mg/day)	0.000	
N ₂ O emission adjustment for moisture content of sludge (Mg/day)	-0.021	
N ₂ O emissions avoidance from coall replacement (Mg/day)		
CO ₂ emissions equivalents from released N ₂ O (Mg/day)	4.17	
Cement Replacement Value CO ₂ replacement value from cement manufacture (Mg CO ₂ /day)	-0.02	
CO ₂ replacement value from cement manufacture (mg CO ₂ /day)	-0.02	
Fertilizer Off-set Credits		
From phosphorus applied to soil (Mg CO ₂ /day)	0.00	
Biomass Combustion	05 70	
CO ₂ Emissions equivalents from burning sludge (Mg/day)	25.72	

CO ₂ equivalents (Mg/year)	-6,236
Scope 1	-6,242
Scope 2	15
Scopes 1 & 2	-6,227
Scope 3	-8
Biomass combustion*	9,386

Instructions and Notes

General: Enter combined data for all operating incinerators. The data input with the most impact is the average high (freeboard) temperature of combustion. Electricity and natural gas used should include energy to operate the incinerator and to operate any pollution control systems associated with the incinerator. Also important is whether or not a urea-based selective non-catalytic reduction air emissions control system is used.

*Biomass combustion emissions are not included in total CO_2 equivalents.

	Кеу		
	Input	0	
Default fro	om reference values	0	
Data used to calculate default (f	0		
	Process output	0	

Assumptions and Calculations

Fuel	
CO ₂ E diesel (g/L)	2772 Canad
Average truck miles/gal (diesel)	5 King (
Average truck km/l (diesel)	2.1 calcul
Propane CO ₂ E from combustion of propane (g/m ³)	1548 <u>BCBP</u>
Natural Gas	
CO ₂ E from combustion of natural gas(g/m ³)	1937 <u>BCBP</u>
Heat content (Btu/m ³)	36263 Canad

Methane molecular weight of methane (g/mol)	16.043		
density of methane gas at 35 C° (L/mol)	25.29		
density of methane gas (kg / m3) - at 35°C density of methane gas (kg / m3) - at standard temp. and pressure		calculated from numbers	above Management and GHG Emission
Heat content of methane (Btu/m ³)			sions, Emissons Factors, and Oth
Biogas CO2 emission factor from combustion of methane portion (kg CO2/m ³)		BCBPMQGHG p1	
Biogas CO2 emission factor from combustion of methane portion (kg CO2/m ³) Percentage of methane emitted directly to the atmosphere when biogas is burned or flared - normal efficient combustion		The Climate Registry Lo Smith et al, 2000; Foley	cal Govt Ops Protocol, 2008, p. 1 & Lant. 2007
Percentage of methane emitted directly to the atmosphere when biogas is burned or flared - inefficient process		-	ory of Greehouse Gas Emissions
Wastewater Treatment Factors	450		4450
Typical TSS in sludge after primary sedimentation (kg/1000 m ₃) Expected solids concentration of combination primary/WAS unthickened sludge (%)		Metcalf & Eddy, 2003, p Metcalf & Eddy, 2003, p	
Expected solids concentration in sludge from gravity thickener, primary and WAS (%)	4%	Metcalf & Eddy, 2003, p	. 1457
Typical Biosolids Characteristics (De-watered cake) Total nitrogen (%-dry weight)	<i>other</i> 4.0%	digested 5.0%	limed 3.2%
Total phosphorus (%-dry weight) TVS(%-dry weight)	1.5% 70.0%	1.9% 51.0%	1.2% V 56.0%
Storage and Lagoons			
Default methane generation from anaerobic shallow lagoon - less than 2 m (kg CH ₄ / kg BOD)	0.12	IPCC, 2006. Volume 5 a	ssuming Bo of 0.6 and using 0.2
Default methane generation from anaerobic deep lagoon - more than 2 m (kg CH ₄ / kg BOD)			ssuming Bo of 0.6 and using max
Typical amount of BOD removed to sludge during wastewater treatment Energy required for low-speed aerators in sludge aerated lagoons after primary sedimentation (kW/1000 m ³ sludge)		NACWA 2008 Metcalf & Eddy, 2003, p	. 846 = 0.004xTSS (mg/L)+5
			· · · · · · · · · · · · · · · · · · ·
De-watering and Thickening Thickening electricity use - gravity, gravity belt and drum (kWh/Mg-sludge dry)			nal communication - average of g
Thickening electricity use - centrifuge (kWh/Mg-sludge dry) De-watering electricity use - belt filter press and rotary (kWh/Mg-sludge dry)		Mark Gould, CDM perso	nal communication nal communication - average of b
De-watering electricity use - centrifuge (kWh/Mg-sludge dry)	101.4	Mark Gould, CDM perso	nal communication - using the thi
Polymer use for belt thickening of WAS (kg/Mg of dry solids treated) Polymer use for de-watering (kg/Mg of dry solids treated)		Metcalf & Eddy, 2003, p Metcalf & Eddy, 2003, p	. 1498 (average of 3-7) . 1556 (range is 1 - 10 for primary
CO2 equivalents of Polymer manufacture (Mg CO2eq/Mg polymer)	9.0	Carnegie Mellon Green I	Design Inst. (http://www.eiolca.ne
Density of de-watered sludge (kg/m ³)	950	Sylvis experience for Ca	nada (1000 is alternate default va
Aerobic Digestion			
Typical design electricity use for aerobic digester systems (kW/m3 of digester volume) Typical design electricity use for aerobic digester systems (kW/m3 of digester volume) - high end		Metcalf & Eddy, 2003, p Metcalf & Eddy, 2003, p	
Default sludge retention time (SRT) for aerobic digestors (days)			. 1537 - average of range typically
Anaerobic Digestion			
Methane in anaerobic digester gas (% by volume) Digester gas consumed (% by volume)			/ater Env. Research (77(4): 309- /ater Env. Research (77(4): 309-
Digester gas flared (% by volume)			/ater Env. Research (77(4): 309-
Biogas yield (m ³ /kg-VS destroyed) Heating requirements for digestor (m ³ natural gas/m ³ sludge to digestor)		· ·	stewater Treatment Plants, WEF
Typical design electricity use for anaerobic digester mixing systems (kW/m3 of digester volume)		Metcalf & Eddy, 2003, e.	xample p. 1527 for heat required, . 1519
Default sludge retention time (SRT) for anaerobic digestors (days) Btu per kWh conversion (kWh/Btu)			. 1510 - states that insignificant fu Dutreach Program Benefits calcula
Net capacity factor to be applied to conversion of methane to electricity			Management and GHG Emission
Thermal Drying		L	
Electricity Use (kWh/Mg-dry)	214	From Windsor, Canada	data
Alkaline Stabilization Emissions associated with lime production (Mg CO ₂ E/Mg lime)	0.0	Osara esia Mallan Oraca I	Design Inst. (http://www.eiolca.ne
Amount of lime added to sludge for Class B stabilization (Mg lime/Mg sludge-dry wt.)		•	ience with Blue Plains WWTP, D
Amount of lime added to sludge for Class A stabilization (Mg lime/Mg sludge-dry wt.) Electricity use for Class B stabilization (kWh/Mg-wet)		data from Halifax, Nova	
Electricity use for Class A stabilization (kWh/Mg-wet)		Mark Gould, CDM perso Mark Gould, CDM perso	
Composting			
Set up and Break Down piles			
Fuel -windrow (L/Mg feedstock- wet) Fuel -Aerated Static Piles (ASP) (L/Mg feedstock- wet)		Recycled Organics Unit Brown et al, JEQ 2008	(2006) as referenced in Brown et
Fuel -for grinding (L/Mg feedstock- wet)	3.3	Brown et al, JEQ 2008	
<i>Emissions During Composting</i> CH ₄ emissions from composting - uncovered (% of initial C content)	2.50(Brown at al. IEO 0000	
CH_4 emissions from composting - covered or biofilter (% of initial C content)		Brown et al, JEQ 2008 Brown et al, JEQ 2008	
N_2O emissions from composting with low C:N (% of initial N content)		Brown et al, JEQ 2008	
N ₂ O emissions from composting (% of initial N content)	1.3%	Czepiel, 1996	
N ₂ O emissions from composting (% of initial N content)	4.6%	Fukumoto, 2003	
N ₂ O emissions from composting high C:N (% of initial N content)		Brown et al, JEQ 2008	
Solids content above which no CH ₄ or N ₂ O is generated during composting Cut-off between low and high C:N		BEAM default BEAM default	
Electricity Requirements for Composting			
Complete in-vessel electricity use (kWh / dry Mg sludge)			Merrimack electricity bill for full
Complete in-vessel electricity use (kWh / Mg waste composted) Aeration electricity use ASP (kWh/dry Mg sludge in compost blend)		Wannholt, 1998 cited by 90 is the value in Brown	Smith et al. 2001 et al, JEQ 2008 - the reference w
Compost Feedstocks Typical Characteristics	Sawdust	Sawdust densitv. solids :	and nitrogen data from On-Farm
Density (kg/m ³)	250		-
Solids content (%) Total nitrogen (%-dry weight)	61.0%	Sawdust density, solids a	and nitrogen data from On-Farm
TVS(%-dry weight)	92.5%	Handbook 1992 average	e values, TVS from Bill Seekins da
Organic carbon(%-dry weight)	51.8%	l	

Carbon Sequestration

number used in BEAM calculations numbers found in literature, but not used in BEAM calculations

anadian default CO₂ emissions factors for transport fuels - Climate Registry General Reporting Protocol V. 1.1

ng County (Washington State, USA) ulated from numbers above

PMQGHG p12

<u>BPMQGHG</u> p12

anadian default CO₂ emissions factors for combustion of natural gas - Climate Registry General Reporting Protocol V. 1.1

ions Other Reference Data

b. 174 - and converted from ft3 to m3

ions and Sinks p. 8-8

WWTP plant data

0.2 for MCF

maximum MCF (0.67), per NACWA recommendation, 2008 (replaces 0.8 in Canada inventory and 2006 IPCC Guidelines for National Greenhouse Gas Inventories)

f gravity, gravity belt and drum thickening on blended sludge electricity use calculations

f belt filter press and rotary de-watering on blended sludge electricity use calculations

thickening value for centrifuge electricity use

mary, WAS, belt filter press, centrifuge)

.net/accessed March 2010)

It value using density of water at 5°C)

ically used for design

09-403) as referenced in Energy Consumption Implications for Wastewater Treatment in Canada - Hydromantis 2006. Also U.S. EPA, 2007, p. 8-8. 09-403) as referenced in Energy Consumption Implications for Wastewater Treatment in Canada - Hydromantis 2006.

309-403) as referenced in Energy Consumption Implications for Wastewater Treatment in Canada - Hydromantis 2006.

EF Manual of Practice No. 8, 4th Edition, 1998 - this is the average of the range that they reference of 0.8 - 1.0 ired, assuming natural gas provides 36.5 MJ/m3 and the heat exchange from natural gas to sludge is 80% efficient.

ant further VS destruction is expected after 15 days at 35°C

culator www.epa.gov/lmop/ ions

.net/accessed March 2010) , District of Columbia

n et al, JEQ 2008

full composting building, including aeration, turning, office space lighting, and biofilter

e within the study is Steve Diddy personal communication - and this 180 is assuming that, on a dry weight basis, biosolids and wood feedstocks will be mixed 1 to 1

arm Composting Handbook 1992 average values, TVS from Bill Seekins data (ME Dept. Ag)

m Composting data (ME Dept. Ag)

Undigeste Dig	gested Lime	b
1.5	1.9	1.2
70	51	56

From biosolids/compost applications (Mg CO ₂ /dry Mg-biosolids)	0.25	BEAM
From biosolids applications - annual loading (Mg CO ₂ /dry Mg-biosolids)	0.23	Tian et
From biosolids applications - annual loading (Mg CO ₂ /dry Mg-biosolids)	1.6	Kurtz, I
From biosolids applications - reclamation (Mg CO ₂ /dry Mg-biosolids)	0.3	Kurtz N
From biosolids applications - reclamation (Mg CO ₂ /dry Mg-biosolids)	1.74	Kurtz M
From biosolids applications - reclamation (Mg CO ₂ /dry Mg-biosolids)	0.11	Trlica, I
From biosolids applications - reclamation (Mg CO ₂ /dry Mg-biosolids)	1.3	Trlica, I
From biosolids applications - reclamation (Mg CO ₂ /dry Mg-biosolids)	0.85	Trlica, I
From biosolids applications - reclamation (Mg CO ₂ /dry Mg-biosolids)	1.15	Trlica, I

Fertilizer Off-set Credits

Credit for Nitrogen (kg CO ₂ /kg N)	4	Recycled Orga
Credit for Nitrogen (kg CO ₂ /kg N)	3.6	Murray et al. 20
Credit for Nitrogen (kg CO ₂ /kg N)	3.1 - 4.7	Kim and Dale,
Credit for Nitrogen (kg CO ₂ /kg N)	1.3	IPCC, 2006
Credit for Nitrogen (kg CO ₂ /kg N)	4.5	Schlesinger, 19
Credit for Phosphorus (kg CO ₂ /kg P)	2	Recycled Orga
Credit for Phosphorus (kg CO ₂ /kg P)	3	Brown and Leo
Credit for Phosphorus (kg CO ₂ /kg P)	4.86	Murray et al. 20

Landfill Disposal

Landfill gas recovery, average U. S.	75.0%	U. S
Landfill gas recovery	45.0%	IPCO
Landfill gas recovery, most efficient reported	99.2%	Spok
Using same N ₂ O emissions from composting- <30:1 C:N (% of initial N content) for landfilling (1.5%)		Brow
f - model correction factor to account for uncertainties	90%	CDN
OX - oxidation factor based on amount of methane oxidized by soil cover - if high quality soil or compost cover	25%	BEA
OX - oxidation factor based on amount of methane oxidized by soil cover - if low quality soil cover	10%	CDN
OX - oxidation factor based on amount of methane oxidized by soil cover - no soil or compost used	0%	CDN
F - fraction of methane in landfill gas	50%	CDN
DOC _f - fraction of degradable organic carbon that can decompose	50%	CDN
DOC _f - fraction of degradable organic carbon that can decompose - undigested/uncomposted solids	80%	Brow
MCF - methane correction factor - anaerobic managed landfills	1	CDN
MCF - methane correction factor - semi-aerobic landfills	0.5	CDN
MCF - methane correction factor - unmanaged landfills with deep and/or with high water tables	0.8	CDN
MCF - methane correction factor - unmanaged landfills - shallow	0.4	CDN
K-decay rate constant for DOC in biosolids - MAT < 20°C and MAP/PET <1 - cool dry	0.06	CDN
Amount of decomposable TDOC decomposed in 3 years using cool dry decay rate	16.5%	calcu
K-decay rate constant for DOC in biosolids - MAT < 20°C and MAP/PET >1 - <i>cool wet</i>	0.185	CDN
Amount of decomposable TDOC decomposed in 3 years using cool wet decay rate	42.6%	calcu
K-decay rate constant for DOC in biosolids - MAT > 20°C and MAP/PET <1 - warm dry	0.085	CDN
Amount of decomposable TDOC decomposed in 3 years using warm dry decay rate	22.6%	calcu
K-decay rate constant for DOC in biosolids - MAT > 20°C and MAP/PET >1 - <i>warm wet</i>	0.4	CDN
Amount of decomposable TDOC decomposed in 3 years using warm wet decay rate	69.9%	calcu

MAP = mean annual precipitation

PET = potential evapotranspiration

Combustion

Methane emissions		1
Methane emissions from incineration (Mg CH4 / dry Mg solids burned, assuming 20% solids)	0.0000485	IPCC
N ₂ O Emissions		1
Increase in N2O default emissions SNCR using urea catalyst	20%	BEA
% decrease in N2O emissions for semi-dry solids content (24-87%)	50%	BEA
% decrease in N2O emissions for dry solids content (>87%)	60%	BEA
% conversion N to N2O during combustion = 161.3 - 0.140 [*] T _f where T _f = max. freeboard temp. in $^{\circ}$ K		Suzu
constant 1 for above equation	161.3	Suzı
constant 2 for above equation	0.14	Suzu
Lowest combustion temperature to be used in Suzuki equation (°C)	750	to en
N ₂ O emissions from combustion (g N ₂ O/Mg sludge combusted - dry wt.)	990	IPCO
MJ/Mg sludge - dry wt digested	12000	1
	295	
Muliple Hearth Furnace electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control		
Muliple Hearth Furnace electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fluidized Bed Incinerator electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control		
Muliple Hearth Furnace electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fluidized Bed Incinerator electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fuel Requirements	200	NEC
Muliple Hearth Furnace electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fluidized Bed Incinerator electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fuel Requirements Energy required to remove water from sludge (GJ/Mg-water)	200	NEO Meto
Muliple Hearth Furnace electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fluidized Bed Incinerator electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control <i>Fuel Requirements</i> Energy required to remove water from sludge (GJ/Mg-water) Expected efficiency in converting chemical energy in biosolids to usable energy	200 4.5 80%	NEC Meto BEA
Electricity Use Muliple Hearth Furnace electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fluidized Bed Incinerator electricity use - (kWh/Mg sludge - dry wt.) - includes pollution control Fuel Requirements Energy required to remove water from sludge (GJ/Mg-water) Expected efficiency in converting chemical energy in biosolids to usable energy Additional fuel required for Multiple Hearth Furnace due to shut downs Credit for use of ash in cement manufacturing	200 4.5 80%	NEO Meto

Land Application

Emissions During Land Application		
N ₂ O emissions from land application - coarse textured soils (% of initial N content)	0.50%	BEAM defa
N ₂ O emissions from land application - fine textured soils (% of initial N content)	2.30%	average of
Minimum solids content of biosolids at which N ₂ O emissions is reduced on fine textured soils	80%	BEAM defa
Reduction in N ₂ O emissions on fine-textured soils from high solids content in biosolids	50%	BEAM defa
CH ₄ emissions during storage of biosolids prior to land application (kg/m ³ -day)	0.0091	average of
NO ₂ emissions during storage of biosolids prior to land application (kg/m ³ -day)	0.00043	average of
CO ₂ E from CaCO ₃ added to soil	0.44	assuming a
CO ₂ E from CaCO ₃ added to soil	0.12	IPCC 2006
CO ₂ E from CaCO ₃ added to soil	0.0059	West and M
Fuel Use During Land Application		
Tractor fuel use (I-diesel/hr)	25	http://trac
Time to apply (loads/hr)	3	estimate
Size of loads (m ³)	13	estimate
Ma CO, wet Ma of biosolids applied	0.0040	

Mg CO_{2/}wet Mg of biosolids applied 0.0046 calculated from numbers above Mg CO_{2/}wet Mg of biosolids applied - low 0.0032 Brown, unpublished data Mg CO_{2/}wet Mg of biosolids applied - high 0.015 Brown, unpublished data

Conversions

		Metric to English		
1	km	=	0.621	miles
1	liter	=	0.264	gallons
1	MJ	=	947.82	Btu
1	GJ	=	947,817	Btu
	°K	=	273.15	+ °C

- M default et al. 2009 z, M.S. thesis 2010 z M.S. thesis 2010 z M.S. thesis 2010 a, M.S. thesis 2010 a, M.S. thesis 2010 a, M.S. thesis 2010
- a, M.S. thesis 2010

ycled Organics Unit, 2006

ray et al. 2008

and Dale, 2008

lesinger, 1999

ycled Organics Unit, 2006 - as per SLB, we will not go into nutrient availability indices; a kg of N or P is simply a kg of N or P n and Leonard, 2004

ray et al. 2008

. EPA, The Climate Registry Local Govt Protocol, 2008

C default (avg. of default range of 40-50%) kas, et al. 2006 - clay cover with gas recovery system

vn et al, JEQ 2008

- Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2). M default

I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2). 1 - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2). I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

n, et al., 2008; Metcalf & Eddy, 2003, p. 1514 - equation calculated out to 100 days

I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

- Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2). I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

ulated from numbers above I - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

ulated from numbers above

1 - Tool to determine methane emissions avoided from dumping waste as a solid waste disposal site (version 2).

ulated from numbers above

I-based factor for warm-wet climates and SLB-determined decay rate for all landfills based on findings indicating that landfills create their own warm-moist micro-climate in which they reside: for warm-wet the IPCC decay rate (as referenced in the Australian WSAA lit review is 0.35) ulated from numbers above

C, 2006, as cited in Foley & Lant, WSAA, p. 46.

M default M default based on Suzuki et al. 2003 AM default based on Suzuki et al. 2003 uki et al. 2003

uki et al. 2003 uki et al. 2003

nsure that max levels from calculation do not exceed max reported levels in Suzuki et al. 2003

C 2006 from Chapter 5 - Incineration and Open Burning of Wastes

calf & Eddy, 2003, p. 1588 (average of undigested primary and secondary) tcalf & Eddy, 2003, p. 1588 (average for anaerobically digested sludge)

ORSD data from Bob Dominak personal communication ORSD data from Bob Dominak personal communication - 70% of MHF electricity requirements

calf & Eddy, 2003, p. 1588 M default M default

ray et al. 2008 - Table S20; see calculation, below

AM default based on an interpretation of the Rochette 2006 paper

rage of 1.3% and 3.3% from Rochette 2006 for incorporated and topdressed, respectively, on fine-textured soils AM default

AM default

rage of uncovered raw and digested, winter and summer for cattle slurry from Clemens et al 2006 normalized to 1 day rage of uncovered raw and digested, winter and summer for cattle slurry from Clemens et al 2006 normalized to 1 day

iming all carbon in lime is eventually emitted to the atmosphere as CO₂

C 2006 and McBride 2005

://tractortestlab.unl.edu

nate

MW Carbon	12	
MW Oxygen	16	
C> CO ₂ conversion	3.667	
MW Hydrogen	1	
C> CH ₄ conversion	1.3	
CO ₂ E of CH ₄	21	The C
MW Nitrogen	14	
N> N ₂ O conversion	1.57	
CO ₂ E of N ₂ O	298	The C
MW of Calcium	40	
Fraction Carbon in CaCO ₃	0.12	
Carbon as a % of TVS	56%	On-Fa

Power Generation

Weighted GHG Emission Factors for Power Generation by Province (g/kWh)

weighted Grid Linission Factors for Fower Generation by Frovince (g/kwii)	CO ₂	CH ₄	N ₂ O	total CO2eq*
AB	920	0.02762	0.01723	926
BC	10.8	0.003	0.0008	11
MB	10	0.0004762	0.0002581	10
NB	350	0.01714	0.00671	352
NL	10	0	0.0002903	10
NS	730	0.01476	0.00971	733
ON	180	0.009048	0.003194	181
PE	150	0.001905	0.003065	151
QC	10	0.001429	0.0001613	10
SK	800	0.03619	0.01858	806
YT, NT, and NU	80		0.01139	83

CALCULATING PERCENT (%) OF YEAR WITH TEMPS ABOVE 15 C BY PROVINCE								
					Apr, May, June			
					hours above 15	hours above 15		
Province	January	April	July	October	C	C	Total hrs/yr	Percent of year w/ T > 15 C
Alberta	0%	3%	45%	3%	367	670	1037	12%
British Columbia	0%	0%	22%	0%	158	317	475	5%
Manitoba	0%	3%	55%	3%	439	814	1253	14%
New Brunswick	0%	0%	40%	0%	288	576	864	10%
Newfoundland & Labrador	0%	0%	18%	0%	130	259	389	4%
Nova Scotia	0%	0%	32%	0%	230	461	691	8%
Ontario	0%	3%	60%	3%	475	886	1361	16%
Prince Edward Island	0%	0%	32%	0%	230	461	691	8%
Quebec	0%	0%	50%	0%	360	720	1080	12%
Saskatchewan	0%	0%	50%	0%	360	720	1080	12%
								10%

Atlas of Canada, http://atlas.nrcan.gc.ca/site/english/maps/environment/climate/temperature/temp_summer

Calculating as	
42.25	GWE
10	tons c
	rate o
4.225	kg off
0.3	perce
1.2675	kg off

References not cited

NACWA (National Association of Clean Water Agencies). 2008. Letter to U.S. EPA quoted in California Wastewater Climate Change Report 2008

Hydromantis, Inc. 2006. Energy Consumption Implications for Wastewater Treatment in Canada. Final Report submitted to Environment Canada. March 29, 2006.

On-Farm Composting Handbook. 1992. NRAES-54. The National Regional Agricultural Engineering Service. Edited by Robert Rynk West, T.O. and A.C. McBride. The contribution of agricultural lime to carbon dioxide emissions in the U.S.: dissolution, transport and net emissions. 2005. Ag Ecosys. And Env. 108. 145-154

New References for CRD Combustion Assessment

	CO ₂	CH ₄	N ₂ O	total CO2eq*
Coal Coke				525 <u>Refe</u> r
Coal Calorific Values	Value	Reference	Source Jurisdiction	Notes
GJ/tonne - Heat value - anthracite		<u>Reference</u>	Canada	p 27
GJ/tonne - Heat value - lignite		<u>Reference</u>	Canada	p 27
GJ/tonne - Heat value - subbituminous coal		<u>Reference</u>	Canada	p 27
GJ/tonne - Heat value - bituminous coal		<u>Reference</u>	Canada	p 27
BTU / kg - anthracite		<u>reference</u>	USA	
BTU / kg - lignite		<u>reference</u>	USA	
BTU / kg - subbituminous coal		<u>reference</u>	USA	
BTU / kg - bituminous coal		<u>reference</u>	USA	
BTU/kg - anthracite		calculated	Canada	
BTU/kg - lignite		calculated	Canada	
BTU/kg - subbituminous coal		calculated	Canada	
3TU/kg - bituminous coal	24956	calculated	Canada	
Coal Emission Values	Value	Reference	Source Jurisdiction	Notes
CO ₂ E from combustion of coal (kg/1,000,000 BTU) - anthracite	103	EIA	USA	US mean, Table FE4
CO ₂ E from combustion of coal (kg/1,000,000 BTU) - lignite	98	<u>EIA</u>	USA	US mean, Table FE4
CO ₂ E from combustion of coal (kg/1,000,000 BTU) - subbituminous coal	96	<u>EIA</u>	USA	US mean, Table FE4
CO ₂ E from combustion of coal (kg/1,000,000 BTU) - bituminous coal	93	<u>EIA</u>	USA	US mean, Table FE4
CO2 Emission Factor (kg/kg) - coal coke	2.48	Reference	Canada	p 29
	2.07	Reference	Canada	p 30
kg CO2/kg coal - BC - Canadian Bituminous	2.43	<u>Reference</u>	Canada	p 30
kg CO2/kg coal - BC - Canadian Bituminous kg CO2/kg coal - BC - U.S. Bituminous		Reference	Canada	p 30
	1.77		USA	
kg CO2/kg coal - BC - U.S. Bituminous		<u>reference</u>	00/1	
kg CO2/kg coal - BC - U.S. Bituminous kg CO2/kg coal - BC - Sub-bituminous	3.37	<u>reference</u> <u>reference</u>	USA	
kg CO2/kg coal - BC - U.S. Bituminous kg CO2/kg coal - BC - Sub-bituminous CO2 / kg - anthracite	3.37 1.10			

reference input

Climate Registry General Reporting Protocol; use it instead of the updated values in UKWIR, 2005 Workbook for quantifying greenhouse gas emissions. UK Water Industry Research Ltd. Report Ref # 05/CL01/3, which is an IPCC standard according to the Hydromantis, Inc. 2006 report

Climate Registry General Reporting Protocol; use it instead of the updated values in UKWIR, 2005 Workbook for quantifying greenhouse gas emissions. UK Water Industry Research Ltd. Report Ref # 05/CL01/3, which is an IPCC standard according to the Hydromantis, Inc. 2006 report

Farm Composting Handbook, 1992, NRAES, Ithaca, NY; and based on using sugar to represent organic matter

Climate Registry, Canadian Emissions Factors for Grid Electricity by Province from 3/2/09 update

Environment and Climate Change Canada. 2018. National Inventory Report 1990–2016: Greenhouse Gas Sources and Sinks in Canada - Part 3. Government of Canada, Ottawa, **UPDATED** ON.

Climate Registry, Canadian Emissions Factors for Grid Electricity by Province from 3/2/09 update

ubstitution and GHG (GWE) per Murray et al. 2008

E listed for ash use offset in cement in Table S20 cement is used in Murray example

e of ash substitution in cement (10% of cement material is substituted)

ffset/10 tons of cement ent ash from sludge that is burned

ffset per dry ton sludge substituted into cement

720

Aerobic Digestion

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Digester Input		
Sludge quantity (m ³ /day)		
Average sludge volume in digesters any given day (m3)		0
VS (%- wet weight)		3.6%
VS (kg/day) - dry wt.	0	
Digester Output		
Sludge quantity (m ³ /day)		
VS (%- wet weight)		
VS (kg/day) - dry wt.	0	
VS destroyed (kg/day) - dry wt.	0	
% VS destruction	#DIV/0!	
Energy Balance		
Heating requirements of the digestors, if any (m ³ -natural gas/day)	0	0
Electricity requirements of the digestors (kWh/day)		0
CO ₂ emissions from natural gas used (Mg/day)		
CO ₂ emissions from electricity used (Mg/day)	0.00	

CO ₂ equivalents (Mg/year)	0
Scope 1	0
Scope 2	0
Scopes 1 & 2	0
Scope 3	0
Biomass combustion	-

Instructions and Notes

General: Enter combined data from all aerobic digesters. If the digesters are heated (not common), enter the amount of natural gas used.

Кеу	
Input	0
Default from reference values	0
Process output	0

Alkaline Stabilization

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Alkaline Stabilization Input		
Mass of sludge to be stabilized-wet (Mg/day)	100	
Solids content of sludge to be stabilized (%)	25%	
Mass of sludge-dry (Mg/day)	25.0	
Degree of stabilization	Class B	
Is the lime in biosolids derived from a waste product (e.g. cement kiln dust)?	no	no
Amount of alkaline product added (Mg lime or lime equivalent/day)	5.0	5.0
CO ₂ emissions equivalents from lime production (Mg/day)	4.5	
Fuel Use		
Natural gas use (m ³ /day)	0	0
CO ₂ emissions from natural gas used (Mg/day)	0	
Electricity Use		
Electricity requirements of alkaline stabilization (kWh/day)	487	487
CO ₂ emissions from electricity used (Mg/yr)	0.01	

CO ₂ equivalents (Mg/yr)	1,644
Scope 1	0
Scope 2	2
Scopes 1 & 2	2
Scope 3	1,643
Biomass combustion	-

Instructions and Notes

General: Enter data from alkaline stabilization processes, regardless of whether this happens before or after dewatering. Some advanced alkaline stabilization systems may use supplemental heat from natural gas combustion to achieve Class A; if so, enter amount of natural gas used. If electricity is used for supplemental heat for achieving Class A, this is included in the Class A calculation.

Кеу	
Input	0
Default from reference values	0
Process output	0

Composting

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Feedstock Input		
Material type	sludge	
Quantity of sludge going to composting (Mg/day-wet)	100	
Solids content (%)	25.0%	
Quantity of sludge going to composting (Mg/day-dry)	25.0	
Sludge density (kg/m ³)	950	950
Volume of sludge going to composting (m ³ /day)	105	
Has the sludge been digested prior to composting?	no	no
Total nitrogen (%-dry weight)	4.0%	4.0%
Total phosphorus (%-dry weight)	1.5%	1.5%
Total volatile solids - TVS (%-dry weight)	70.0%	70.0%
Organic carbon (%-dry weight)	39.0%	39%
Will compost use replace commercial fertilizer use where it is applied?	yes	yes
Volumetric ratio of amendment to sludge (m ³ amendment:m ³ sludge, as is)*	3	3
Amendment grinding on-site?	yes	yes
Volume of sludge in compost (%)	<u>25%</u> 75%	
Volume of amendment in compost (%) Density of amendment (kg/m³)**		250
	250	230
Quantity of amendment going to composting (Mg/day-wet)	79	
Blended Feedstock Characteristics		
C:N	31	31
Solids content (%)	41%	41%
Type of composting operation	ASP	4170
Are active composting piles covered or is the air from them treated through a biofilter?	yes	yes
	yc3	ycs
Fuel Use		
Grinding (L-diesel fuel/day)		261
Setting up and breaking down piles (L-diesel fuel/day)		447
Total fuel use for composting equipment (L-diesel fuel/day)	708	708
Applying compost to land (L-diesel fuel/day)	67	67
CO ₂ Emissions from Diesel used (Mg/day)	2.15	
Electricity Use		
Electricity requirements of composting system (kWh/day)	4,500	4,500
CO ₂ Emissions from Electricity used (Mg/day)	0.05	
Aethane Emissions		
CH₄ emitted from compost pile (Mg/day)	0.00	
CO_2 Emissions equivalents from released CH_4 (Mg/day)	0.00	
litrous Oxide Emissions		
N ₂ O emitted from compost pile (Mg/day)	0.000	
N ₂ O emitted from applying compost to soils (Mg/day)	0.0079	
CO ₂ Emissions equivalents from released N ₂ O (Mg/day)	0.00	
Carbon Sequestration		
From compost applied to soil (Mg CO ₂ /day)	-6.25	
Fertilizer Off-set Credits		
From nitrogen applied to soil (Mg CO ₂ /day)		
From phosphorus applied to soil (Mg CO ₂ /day)	-0.75	

CO ₂ equivalents (Mg/year)	-3,213
Scope 1	-1,497
Scope 2	18
Scopes 1 & 2	-1,479
Scope 3	-1,734
Biomass combustion	-

Instructions and Notes

General: Enter data for all solids that were composted. Whenever possible use data from local measurements.

*For this row, if entering a local value, enter in both the blue and orange cells. **Default is for density of sawdust.

K	ey
Input	0
Default from reference values	0
Data used to calculate default (for information only)	0
Process output	0

Landfill Disposal

Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Sludge Characteristics Input		
Quantity going to landfill (Mg/day-wet)	100	
Density (kg/m ³)	950	950
Solids content (%)	25.0%	
Quantity going to landfill (Mg/day-dry)	25.0	
Has the sludge been digested prior to diisposal?	no	no
Total nitrogen (%-dry weight)	4.0%	4.0%
TVS (%-dry weight)	70.0%	70.0%
Organic carbon (%-dry weight)	39.0%	39%
Organic carbon (Mg/day-dry weight)	9.8	
Methane correction factor for landfill (DOC _f that will decompose in landfill)	1	1
Quality of soil cover at landfill (high = good organic matter content, supports vegetation well)	high	high
Oxidation of methane by soil cover - applies three years after placement of wastewater solids in landfill	25%	25%
Methane captured at landfill and flared, combusted or otherwise used - after 3 years	75%	75%
Percent of captured methane used to generate electricity	0%	0%
DOC _f - fraction of degradable organic carbon that can decompose	80%	80%
Amount of decomposable TDOC decomposed in 3 years	69.9%	69.9%
Methane Emissions		
CH ₄ released from first three years after landfilling (Mg/day)	3.3	
CH ₄ released after three years (Mg/day)	0.26	
Fugitive CH ₄ from combusted CH ₄ (Mg/day)	0.00	
CO_2 Emissions equivalents from released CH_4 (Mg/day)	74.3	
Nitrous Oxide Emissions		
N ₂ O emitted from landfilled sludge (Mg/day)	0.024	
CO ₂ emissions equivalents from released N ₂ O (Mg/day)	7.02	
Carbon Sequestration		
From undecomposed carbon from landfilled sludge (Mg CO ₂ /day)	-7.15	
Electricity Generation Credit		
Electricity generated (kWh/day)	0	
CO ₂ emissions avoided from electricity generated (Mg/day)	0.00	
CO ₂ emissions from biomass (biogas) combustion (Mg/day)	2.90	

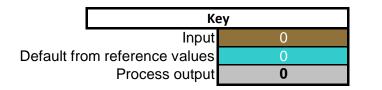
CO ₂ equivalents (Mg/year)	27,078
Scope 1	27,078
Scope 2	0
Scopes 1 & 2	27,078
Scope 3	0
Biomass combustion*	1,057

Instructions and Notes

General: Enter data for all wastewater solids sent to a landfill for disposal.

*Biomass combustion emissions are not included in total CO₂ equivalents.

К	Кеу	
Input	0	
Default from reference values	0	
Process output	0	


Unit Processes & Inputs	Inputs & Daily Emissions	Default Input (Optional)
Biosolids characteristics		
Quantity going to land application (Mg/day-wet)	100	
Solids content (%)	25.0%	
Quantity going to land application (Mg/day-dry)	25.0	
Density (kg/m ³)	950	950
Type of biosolids to be land applied	digested	limed
Total nitrogen (%-dry weight)	5.0%	5.0%
Total phosphorus (%-dry weight)	1.9%	1.9%
TVS (%-dry weight)	51.0%	51.0%
Organic carbon (%-dry weight)	28.6%	28.6%
CaCO ₃ equivalence (%-dry weight)	0.0%	0.0%
Average number of days biosolids is stored prior to land application	25	
Will biosolids replace commercial fertilizer where it is applied?	yes	yes
Is lime in biosolids derived from a waste product (e.g. cement kiln dust)	no	no
Will the lime in biosolids replace purchased lime where it is applied?	yes	yes
Soil Texture at land appplication sites (total)		
Fine-textured (% of land application area)	50%	50%
Coarse-textured (% of land application area)	50%	
Fuel Use		
Applying biosolids to land (L-diesel fuel/day)	67	67
CO ₂ emissions from diesel used (Mg/day)	0.19	
Methane Emissions		
CH ₄ emitted from storage of biosolids prior to land application (Mg/day)	0.0216	
CO_2 Emissions equivalents from released CH_4 (Mg/day)	0.45	
Nitrous Oxide Emissions		
N ₂ O emitted from land application - fine-textured soils (Mg/day)	0.0226	
N ₂ O emission adjustment for dry biosolids on fine-textured soil (Mg/day)	0.000	
N ₂ O emitted from land application - coarse-textured soils (Mg/day)	0.0049	
N_2O emitted from storage of biosolids prior to land application (Mg/day)	0.0010	
CO_2 emissions equivalents from released N ₂ O (Mg/day)	0.30	
	0.00	
Carbon Sequestration		
Carbon Sequestration From biosolids applied to soil (Mg CO ₂ /day)	-6.25	
	-0.25	
Eartilizar Off. sat Cradits		
Fertilizer Off-set Credits	-5.00	
From nitrogen applied to soil (Mg CO ₂ /day)		
From phosphorus applied to soil (Mg CO ₂ /day)	-0.95	
Calcium Carbonate Debit	A A A	
From CaCO ₃ applied to soil (Mg CO ₂ /day)	0.00	

Land Application (of non-composted biosolids)

CO ₂ equivalents (Mg/year)	-4,108
Scope 1	-1,937
Scope 2	0
Scopes 1 & 2	-1,937
Scope 3	-2,172
Biomass combustion	-

Instructions and Notes

On this page, enter data for all biosolids that are applied to land, but have not been composted. This may include alkaline stabilized biosolids (complete the alkaline stabilized page) or other Class A or Class B biosolids.

