Core Area Wastewater Treatment Program Assessment of Biosolids Treatment and Integrated Resource Management Options

Table of Contents

ACKNOWLEDGEMENT

EXECU	JTIVE SUN	MARY		1
1.0	INTRO	DUCTION	۱	5
	1.1	Purpose of this Report		
	1.2	Backg	round	5
	1.3	Previou	us Biosolids Planning Work	6
	1.4	Prover	1 Technology Considerations	7
	1.5	CRD's	Long Term Objective for Integrated Resource Management	7
	1.6	CRD P	olicy on Land Application of Biosolids	7
	1.7	Definit	ions and Terminology	8
2.0	REGUI		EQUIREMENTS FOR TREATMENT AND DISPOSAL	10
	2.1	Federa	וג Regulations	10
	2.2	Provinc	cial Regulations	10
		2.2.1	Organic Matter Recycling Regulation (OMRR)	10
		2.2.2	Municipal Wastewater Regulation	13
		2.2.3	Liquid Waste Management Plan	13
3.0	BIOSOLIDS TREATMENT TECHNOLOGY OPTIONS			
	3.1	Long L	ist of Technologies Reviewed to Date	15
	3.2	Techno	ology Carried in Current Funding Agreement and Procurement Approach	17
	3.3	Consic	Jerations of Technology Selection for IRM	18
	3.4	Emerg	ing Gasification Technology	19
4.0	BIOSC	LIDS OPT	IONS ANALYSIS AND DISCUSSION	22
	4.1	Biosolia	ds Options Screening Approach	22
	4.2	Short L	ist of Technology Options	27
		4.2.1	Carbon Footprint of Short Listed Technology Options	27
		4.2.2	Biosolids Treatment Site	
		4.2.3	Residual Solids Pipeline	
	4.3	Facility	⁷ Staging for Ultimate IRM	
	4.4	Biocell	Disposal	
	4.5	Sched	ule Consideration	31
5.0	OPINI	ON OF PR	OBABLE COSTS	32
	5.1	Cost E	stimate Basis	32
	5.2	Capito	al Costs and Whole Life Cycle Costs	32
	5.3	Discuss	sion on Life Cycle Costs	33
6.0	TRIPLE	BOTTOM	LINE ASSESSMENT	34
	6.1	Appro	ach	34

6.2	Evaluation of Qualitative Criteria3	5
6.3	Triple Bottom Line Results	6

LIST OF TABLES

Table 1.1	Design Solids Loads
Table 2.1	OMRR Biosolids Classification Requirements
Table 2.2	Quality and Sampling Requirements for OMRR Residuals and Products
Table 3.1	Summary of Solids Treatment Technologies
Table 3.2	Summary of Full Scale Biosolids Gasification Facilities
Table 4.1	Summary of Options for Initial Screening - Solids Management
Table 5.1	Life Cycle Costs
Table 6.1	Triple Bottom Line Assessment Framework (Weighted)
Table 6.2	Triple Bottom Line Assessment Framework (Unweighted)

LIST OF FIGURES

- Figure 3.1 Funded Solids Management Approach
- Figure 4.1 Screening Approach
- Figure 4.2 Schematic of Biocell

LIST OF APPENDICES

- Appendix A Triple Bottom Line Considerations
- Appendix B Site Drawings of Options
- Appendix C Schedules
- Appendix D Cost Estimates (Commercial Confidential Under Separate Cover)

ACKNOWLEDGEMENT

The Project Board, CRD staff and project advisors provided extensive input into the review of this report and the assessment and selection of the preferred biosolids treatment option. A series of workshops were held throughout the project to obtain input to the evaluation and selection of the preferred treatment option. The contributions of the following individuals are greatly appreciated.

- Jane Bird Chair
- Don Fairbairn Vice Chair
- Jim Burke Project Board Member
- Brenda Eaton Project Board Member
- Colin Smith Project Board Member
- Dave Howe Project Board Member
- Robert Lapham CRD, Chief Administrative Officer, Project Board Member
- Larisa Hutchison CRD, General Manager Parks & Environmental Services
- Dan Telford CRD, Project Manager
- Greg Lewis
 Bull, Housser & Tupper LLP
- David Bursey Bennet Jones LLP
- David Hubner Partnerships BC
- Sue-Anne Fimrite Partnerships BC
- Mark Liedemann Partnerships BC
- Amanda Farrell Partnerships BC
- Doug Ewing KPMG

EXECUTIVE SUMMARY

This report has been prepared to provide the Core Area Wastewater Treatment Project Board with a summary of information compiled over the last 10 years for the approach to biosolids management for the Core Area Wastewater Program.

This report reviews planning work previously undertaken, outlines the regulatory framework and alternatives for biosolids management and identifies economic, environmental and social factors that support recommendations of the most promising alternative(s) via a triple bottom line analysis. Process technologies are reviewed along with examples from successful programs elsewhere in Canada, the U.S. and Europe. In reviewing the alternatives, flexibility and potential opportunities for phasing of facilities are considered. In addition the opportunities for future integration of biosolids and municipal solid and organic wastes are identified.

In previous work Hartland landfill has been identified as the preferred biosolids treatment site. This site provides significant advantages with respect to Integrated Resource Management ("IRM") opportunities with municipal solid and organic wastes ("MSW"). Developing IRM opportunities is an important CRD objective and is a key consideration common to all biosolids options. Biosolids represent about 10% by weight of the total combined biosolids and MSW streams. The CRD will have to plan their future solid waste/organic waste, and biosolids integration. The choices made for the solid waste will ultimately impact what opportunities are available for full integration with biosolids.

As part of the Core Area Wastewater planning work that has been undertaken over the past 10 years, several options for biosolids management have been reviewed by various consulting teams and advisory groups. The planning work has had a common theme throughout; that being, maintaining the ability to recover resources from the biosolids and having the ability to potentially integrate this waste stream with the management of the CRD's solid and organic wastes.

Residual solids processing reliability is fundamental to successful operation of the liquid train treatment process. Even before developing a robust design, including redundant units to act as standby during required maintenance, the selection of well-proven technologies is required for system reliability for both the biosolids and liquid treatment processes.

This report assumes that viable technologies are those which are well proven in the industry and therefore present little if any risk. As part of this assessment, newer technologies which have been brought forward to the CRD by their developers have been reviewed. Some of these technologies may show promise with further development and may warrant consideration in the future with integrated residual solids and MSW processing facilities. In the meantime the CRD can undertake the necessary planning to determine if these waste streams will be fully integrated.

One of the technologies that has been evaluated is emerging gasification technology. This process is a chemical-physical process in which compounds are broken down to their elements and reformed into combustible syngas compounds including methane, carbon monoxide and hydrogen. The process occurs at high temperatures with very little oxygen present. The operation of a gasifier is more complex than other processes typically found in biosolids processing. Successful use of gasification technologies for biosolids processing is limited at this time. While refinement to the technology continues to occur, there is no facility with a long track record of successful operation on biosolids feedstock only.

The CRD Board has adopted a Regional Biosolids Management Policy banning the land application of treated biosolids to farm land and parks or the production of any products which are ultimately applied to land. The policy does not support transporting biosolids for land application outside the CRD. This policy limits the available options for disposal of biosolids for the CRD. This report therefore concentrates on options which did not include land disposal. In the long term the CRD may wish to revisit this policy as beneficial reuse is currently strongly advocated by the BC Ministry of Environment.

Regulatory requirements exist at the federal and provincial level in British Columbia that address biosolids quality, protect the environment, and regulate the management of wastes that include biosolids. Areas for consideration with respect to biosolids regulations relate to such factors as metal concentrations, pathogen reduction, vector attraction reduction and air quality. In British Columbia, land-based biosolids utilization is governed by the Organic Matter Recycling Regulation (OMRR).

Several engineering firms and expert Peer Review Teams have been involved in assessing biosolids treatment facilities as part of the evaluation of providing treatment facilities for the CRD.

Table 3.1 in the report summarizes the treatment technologies that have been reviewed during the various planning studies. The use of proven technology is necessary to meet the regulatory and reliability requirements of the project.

A common thread amongst many of the processes evaluated is their ability to either provide resource recovery or be part of future IRM opportunities. Many of the options also have the capability for beneficial reuse. With all of the processes that include anaerobic digestion, opportunities exist to generate, capture and utilize biogas. The utilization of biogas can include the production of heat for the overall residual solids treatment process, cogeneration for the production of electricity that can either be used internally or can be sold to the electrical grid, upgrading the biogas so it can be used to power fleet vehicles, and the scrubbing of the biogas to produce a quality suitable for mixing with utility pipeline quality natural gas.

An initial analysis of the option sets produced by the engineering consulting teams was conducted, and a total of 20 options were summarized for evaluation. It was proposed that the 20 options be first evaluated using a high level screening process which did not consider cost or schedule to provide an objective evaluation of all options. The screening approach is shown below.

After the first phase of screening, 14 of the 20 initial options were eliminated as many of the eliminated options rely on land application as the sole means of disposal. The options utilizing gasification were screened out as this technology is not considered proven in the context of using biosolids alone as the feedstock. A sub option of the 6 short listed options , noted as 4a below was added to assess the use of cost effective insulated steel tanks, as used at many European plants for the digestion facilities.

Using the screening protocol described above, a short list of seven options was advanced for further consideration by the Project Board.

The seven options carried forward for costing and triple bottom line analysis were:

- 1. Anaerobic digestion, biosolids drying (pelletization for multiple uses), struvite recovery and biogas conditioning
- 2. Anaerobic digestion with biosolids drying
- 3. Residual solids drying (pelletization)
- 4. Anaerobic digestion/ biocell reactors (with or without MSW)
- 4a. Anaerobic digestion (steel tanks) / biocell reactors (with or without MSW)
- 5 Undigested residual solids biocell reactors (residual solids with or without MSW)
- 6 Residual solids thermal destruction

Given the current CRD policy on land application, the CRD must have a reliable disposal method for biosolids for the time period until integration with MSW is planned and implemented. Recognizing that full integration planning and public consultation can take some time, a reliable disposable option is required. One potential option is a biocell. A biocell is a closed loop landfill reactor system that is operated in three stages.

A biocell provides multiple advantages over a traditional landfill system. The system enhances anaerobic microbial action, resulting in increased gas capture and power production. Stabilization of waste occurs in a shorter period of time. Also, compost material and other recyclables are recovered during the "mining" stage. Finally, the space and infrastructure within the reactor is reusable. The cells would be mined after five years and products could be incorporated into a beneficial reuse program or used as landfill cover.

The life cycle costs (rounded) for the seven options are summarized below.

Option	Capital Cost	Annual Operations and Maintenance Cost	Life Cycle Cost
Option 1 –Anaerobic digestion, drying, gas recovery, nutrient recovery (previously funded case)	\$ 267,000,000	\$ 3,021,000	\$ 314,200,000
Option 2 – Anaerobic digestion, drying (with no gas scrubbing for utility sale and no nutrient recovery)	\$ 224,000,000	\$ 4,060,000	\$ 287,200,000

Life Cycle Costs

Option	Capital Cost	Annual Operations and Maintenance Cost	Life Cycle Cost
Option 3 – Residual solids drying pelletization	\$ 188,252,000	\$ 4,405,845	\$ 257,080,000
Option 4 – Anaerobic digestion biocell reactors	\$ 165,557,000	\$ 2,631,000	\$ 206,700,000
Option 4a – Anaerobic digester (steel tank) / biocell reactors	\$ 143,646,000	\$ 2,631,000	\$ 184,800,000
Option 5 – Dewatered residual solids / biocell reactors	\$ 104,153,000	\$ 3,483,000	\$ 158,600,000
Option 6 – Residual solids thermal destruction	\$ 223,997,000	\$ 3,259,030	\$ 274,900,000

The seven options were assessed using a triple bottom line (TBL) framework. The TBL considers economic, environmental and social criteria to provide balanced decision making.

Scoring completed indicates the current base case under the funding agreement (Option 1) provides the highest TBL in the absence of economic considerations. Options 4 and 4a anaerobic digestion with disposal to a biocell provided reasonable triple bottom line results and result in significant capital savings. Option 4a involves the use of insulated bolted steel tanks for the digesters and provides a cost effective solution that will produce Class A biosolids with significant flexibility for future end use. Option 4a is the preferred option to carry forward in the business case.

1.0 INTRODUCTION

1.1 Purpose of this Report

This report has been prepared to provide the Core Area Wastewater Treatment Project Board with a summary of information compiled over the last 10 years for the approach to biosolids management for the Core Area Wastewater Program. The report presents work that has been completed by the Capital Regional District (CRD), Core Area Liquid Waste Management Committee, and engineering consultants. A significant amount of work has been completed and is essential to the considerations of the Project Board in their efforts to review, select and ultimately recommend a biosolids management option(s) for the Core Area Wastewater Treatment Program.

1.2 Background

As part of the wastewater treatment and conveyance project for the Capital Regional District (CRD), consideration must also be given to the management of the residual solids that will be produced by whichever liquid treatment process is ultimately selected. The intent of this report is to outline the steps followed in assessing the best option(s) for biosolids treatment, resource recovery, and disposal or re-use. While there are three short-listed liquid treatment options and sites, it is assumed that each of the short-listed options will generate effectively the same biosolids volume, characteristics, and quality. The only difference being that tertiary treatment will produce approximately 10% more residual solids than secondary treatment. Consequently, this report focuses on planning for and recommending biosolids processing and ultimate disposal / re-use, including assessment of resource recovery and integration with municipal solid waste handling that are common to all remaining liquid treatment siting alternatives. In previous work Hartland landfill has been identified as the preferred biosolids treatment site. This site provides significant advantages with respect to Integrated Resource Management ("IRM") opportunities with Municipal solid and organic wastes ("MSW"). Developing IRM opportunities is an important CRD objective and is a key consideration common to all biosolids options.

Biosolids represent about 10% by weight of the total combined biosolids and MSW streams. There are no policies and regulations in place designed to directly support development of IRM options and at this point in time, there are insufficient, long term third party revenues that would justify investing in technology options to integrate treatment of biosolids with MSW streams. In addition, funding has not been made available by senior levels of government for IRM. Consequently, the primary objective is developing a robust and easy to operate biosolids treatment facility options that meet current regulatory requirements and available capital funding, while maximizing the potential for future integration of biosolids and MSW treatment and resource recovery options. Maximizing future integration will require close collaboration with local Municipalities and private sector contractors and the first step will be the development of IRM policies and regulations as well as an overall integration plan. Once effective policies and regulations are in place across the region, it will be easier to assess potential IRM options and the degree to which revenues from the sale of recovered products might fund operating costs and finance related capital investments.

The current funding in place for the Core Area Wastewater Treatment project includes funding from P3 Canada for the biosolids treatment facilities. This funding assumes delivery of the biosolids facilities as a design build operate finance contract. This report assumes a similar delivery model, regardless of the technology ultimately selected.

This report reviews planning work that has already been undertaken, outlines the regulatory framework, and alternatives for biosolids management and identifies economic, environmental and social factors that support recommendations of the most promising alternative(s) via a triple bottom line approach analysis. Process technologies are reviewed along with examples from successful programs elsewhere in Canada, the U.S. and Europe. In reviewing the alternatives, flexibility and potential opportunities for phasing of facilities are considered. In addition the opportunities for integration of biosolids and MSW are identified in this report.

1.3 Previous Biosolids Planning Work

As part of the Core Area Wastewater planning work that has been undertaken over the past 10 years, several options for biosolids management have been reviewed by various consulting teams and advisory groups. The planning work has had a common theme throughout; that being, maintaining the ability to recover resources from the biosolids and having the ability to potentially integrate this waste stream with the management of the CRD's solid and organic wastes.

The most recent planning work has revolved around a biosolids management facility located at the CRD's Hartland Landfill site. The intent with this site is to receive and process pumped residual solids from the liquid treatment plant(s). The residual solids would be thickened and then be made available for additional processing. The facility will be configured to manage the residual solids based on the quantities outlined in **Table 1.1**. These quantities are based on the liquid treatment facility having an average dry weather treatment capacity based on 108 MLD and design wastewater characterization based on analyses at the Clover and Macaulay outfalls.

Item	Average (kg/day)	Maximum Month (kg/day)
Primary solids	15,550	16,929
Secondary solids	14,260	15,671
Total raw solids	29,810	32,600
Total raw volatile solids ⁽¹⁾	25,070	27,417

1. Volatile fraction of total raw solids

If tertiary treatment is ultimately selected, it is estimated that the additional residual solids production from the tertiary process will be 2,160 kg/d. These additional solids are not significant enough to impact the selection of the ultimate biosolids process.

Once the new secondary liquid waste treatment facilities are commissioned, they will produce significant quantities of residual solids that must be handled on a continuous basis so as to not impact the performance of the liquid waste treatment facilities. Residual solids treatment options must provide reliable performance of both the liquid train and residual solids treatment processes. Any failure of the residual solids process will have significant impacts on the liquid train process.

1.4 Proven Technology Considerations

Residual solids processing reliability is fundamental to successful operation of the liquid train treatment process. Even before developing a robust design, including redundant units to act as standby during required maintenance, the selection of well-proven technologies is required for system reliability.

In undertaking a major wastewater treatment program such as this, the CRD has reviewed many new and emerging technologies. While many of these technologies show promise, they are in the development stage and have no or limited operating history at the scale of facilities required for the CRD. This report assumes that viable technologies are those which are well proven in the industry and therefore present little if any risk. For reference purposes, newer technologies which have been brought forward to the CRD by their developers were reviewed. Some of these technologies may show promise with further development and may warrant consideration in the future with integrated residual solids and MSW processing facilities. The intent is to provide the Project Board with an appreciation for some of the development challenges experienced by developers and users of these newer technologies.

1.5 CRD's Long Term Objective for Integrated Resource Management

The CRD operates the Hartland MSW landfill. There is an opportunity to consider long term integration of residual solids with MSW. There are opportunities for synergies to be realized if the processing and end use of these waste streams are considered together. A goal of the CRD Core Area WWTP project is to optimize the integration of biosolids facilities with the current and future solid waste program. Identification of the potential for integration of the biosolids with MSW is timely because the CRD solid waste management staff has been engaged in feasibility studies that have examined the potential for developing a waste-to-energy facility for management of the residual solid wastes remaining after recycling and separation of organic waste. The MSW will be the governing consideration in developing an integrated approach to management of solid waste and biosolids. The biosolids stream only represents 10% of the waste stream in the CRD so Municipal solid waste processing options will be the primary consideration in development of a future MSW / biosolids integration plan.

1.6 CRD Policy on Land Application of Biosolids

The CRD Board has adopted a Regional Biosolids Management Policy banning the application of treated biosolids to farm land and parks or the production of any products which are ultimately applied to land. The policy does not support transporting biosolids for land application outside the CRD. This policy significantly limits the available options for disposal of biosolids for the CRD. This report therefore concentrates on options which did not include land disposal. Land disposal options have been previously evaluated in the 2009 Biosolids Management Plan, prepared by Stantec / Brown and Caldwell. Future land application options would require a change to CRD policy.

1.7 Definitions and Terminology

Typical definitions and terminology used when discussing biosolids are provided for reference.

Anaerobic Digestion – is a common residual solids treatment process which is used to stabilize residual solids and reduce pathogen levels. The two most common types of anaerobic digestion include mesophilic digestion which operates at 35° C and thermophilic digestion which operates at 55° C. Mesophilic digestion is capable of producing a Class B biosolids while thermophilic digestion can produce a Class A biosolid. Class A and B biosolids are defined in Section 2.2.1 of this report.

Biocell – Biocell is a closed loop anaerobic / aerobic landfill cell in which biosolids and MSW are stored and treated. Resources can be recovered from the biocell including gas and material can be mined following a period of 5 to 7 years for beneficial use.

Biogas – Biogas can be produced from anaerobic digestion or biocells. Biogas can be used for heating digesters and buildings, drying sludge or it can be used to generate electricity in co-generation facilities.

Biosolids – The term biosolids is used to refer to residual solids which have undergone treatment to reduce the pathogens and stabilize the residual solids.

Dewatering – Following digestion solids are dewatered to concentrate solids further to 20 to 30% solids concentration depending on the type of dewatering equipment utilized. The most common types of dewatering equipment in the municipal wastewater industry include belt filter presses, centrifuges and rotary presses.

Drying – Drying is a thermal process which is used to dry digested or undigested residual solids to reduce the volume of material that is handled. Drying can produce a Class A pellet which can be used for fertilizer or fuel feed stock for waste to energy facilities. The residual solids concentration will typically be in the 92-95% range after drying.

Fats, Oils and Grease (FOG) – These products are generated by local industries including restaurants, andare normally recovered from the liquid treatment process. They offer beneficial value in the anaerobic digestion process and increase biogas production.

Municipal Solid Waste (MSW) – MSW is solid waste and refuse that is produced by residents and business operations that is typically disposed of in landfills. This waste includes organic and non-organic wastes. Organic wastes are often incorporated into reuse programs. MSW can serve as a fuel for waste to energy facilities.

Residual Solids – Residual solids are produced as a by-product of liquid treatment. These residual solids include primary solids, secondary solids and tertiary solids that are wasted from the respective processes. These solids are in their raw form and contain pathogens.

Thickening – Residual solids produced by the liquid stream are typically thickened to concentrate solids prior to digestion. Various technologies can be used for thickening including gravity thickeners, gravity belt thickeners and rotation drum thickeners to name a few. This type of process concentrates the solids further to 4 to 6% solids concentration.

Thermal Destruction – Thermal destruction is a thermal process where residual solids are reduced through the process of incineration. For the purposes of this report this process involves the thermal destruction of residual solids following dewatering.

Vector Attraction Reduction – Vectors include animals and birds which have the potential to transmit pathogens from unstabilized residual solids. Treatment processes typically require a volatile solids reduction of at least 38% to reduce the potential for vector attraction.

Waste to Energy Facility – This is a thermal process which is capable of producing electricity for use or sale.

2.0 REGULATORY REQUIREMENTS FOR TREATMENT AND DISPOSAL

Regulatory requirements exist at the federal and provincial level in British Columbia that address biosolids quality, protect the environment, and regulate the management of wastes that include biosolids. Areas for consideration with respect to biosolids regulations relate to such factors as metal concentrations, pathogen reduction, vector attraction reduction, emerging contaminants of concern in biosolids, and air quality.

2.1 Federal Regulations

The Canadian provinces are responsible for regulating biosolids. The only relevant Federal regulation that pertains to biosolids management is related to air quality. This only becomes a factor if the biosolids are used as a feedstock for a waste-to-energy facility, a cement kiln, or some other thermal destruction process, where air quality guidelines are regulated. The *Canadian Environmental Protection Act* (CEPA) presents national standards that apply to all potentially dangerous chemical substances. To comply with CEPA's air emission regulations, three sub-regulations must be met. First, emissions must be monitored on a yearly basis for priority pollutants as outlined in the National Pollutant Release Inventory (NPRI). Secondly, trends in pollutant emissions in Canadian cities must be monitored according to the National Ambient Air Quality Objectives (NAAQOS). Thirdly, the *Management of Toxic Substances Act* requires monitoring of polychlorinated dibenzo-p-dioxins (dioxins) and polychlorinated dibenzofurans (furans), mercury, and chlorobenzenes. In addition to monitoring emissions, the Canadian government committed to reducing the emissions of particulate matter and ozone by 2010.

The Canadian Council of Ministers of the Environment has produced a policy document titled *Canada Wide Approach for the Management of Wastewater Biosolids, October 2012.* This document outlines supporting principles for the beneficial reuse of biosolids. Beneficial use includes the production of energy, compost and soil products preparation, land application and land reclamation.

2.2 **Provincial Regulations**

There are several overlapping regulations that relate to the management of biosolids in British Columbia. The relevance of each is dictated by the means of disposal / reuse that will be utilized.

2.2.1 Organic Matter Recycling Regulation (OMRR)

In British Columbia, land-based biosolids utilization is governed by the Organic Matter Recycling Regulation (OMRR). This is perhaps the most relevant and applicable of the regulations and guidelines that apply to biosolids management in British Columbia. The OMRR was established in 2002 under the authority of the *Waste Management Act* and the *Health Act* and was revised in June 2016. The regulation governs the production, distribution, storage, sale, and use of biosolids and compost.

The regulations provide for two classes of biosolids, Classes A and B, whose characteristics are summarized in **Table 2.1**. Class A biosolids are processed to a higher degree than Class B biosolids, thus having a much lower pathogen concentration in the finished product and much less restrictive handling and land application requirements. The primary objective of biosolids treatment is to reduce the quantity of solids and pathogen

levels so that treated solids can be handled safely and disposed of in a manner to minimize impacts to the environment.

Characteristic	Class A Biosolids	Class B Biosolids
Pathogen reduction requirements	< 1,000 MPN/g (dry solids basis) to be produced by one of the pathogen reduction processes listed below	< 2,000,000 MPN/g (dry solids basis) or one of the pathogen reduction processes listed below
Acceptable processes for pathogen reduction	Thermophilic aerobic digestion at ≥ <u>55°C</u> for at least 30 min	Aerobic digestion with mean cell retention time between 40 days at 20°C and 60 days at 15°C
	Thermophilic anaerobic digestion at ≥50ºC for at least 10 days	Anaerobic digestion with a mean cell retention time between 15 days at 35°C and 60 days at 20°C
	Exposure to time-temperature processing requirements according to arithmetical formulae given in the regulation depending on the TS concentration of the biosolids	Air drying for > 3 months, during which the ambient temperature must be > 0ºC for at least 2 months
	Alkaline stabilization by maintaining the pH within the biosolids > 12 for 72 hours during which T > 52°C for 12 hours, followed by air drying to > 50% TS concentration	Lime stabilization such that the pH of the biosolids is raised to ≥ 12 after 2 hours of contact
Vector attraction reduction requirements	Aerobic or anaerobic digestion resulting in > 38% destruction of volatile solids mass or another acceptable criterion specified in the Regulation	Aerobic or anaerobic digestion resulting in > 38% destruction of volatile solids mass or another acceptable criterion specified in the Regulation

Table 2.1 - OMRR Biosolids Classification Requirements

The OMRR also specifies requirements for Classes A and B compost as well as the maximum allowable metal concentrations in biosolids, compost, and soils following land application. The regulation does not mention disposal of raw biosolids or compounds of emerging concern.

A summary of the quality and sampling requirements for OMRR residuals and products is provided in **Table 2.2**.

Quality Criteria	Class A Biosolids	Class A Compost	Class B Biosolids	Biosolids Growing Medium
Parameters	Trade Memorandum T-4-93 ¹	OMMR Schedule 4	OMMR Schedule 4	OMMR Schedule 4 and 11
Trace elements (μg g ⁻¹)				
Arsenic	75	13	75	13
Cadmium	20	3	20	1.5
Chromium	Not required	100	1,060	100
Cobalt	150	34	150	34
Copper	Not required	400	2,200	150
Lead	500	150	500	150
Mercury	5	2	15	0.8
Molybdenum	20	5	20	5
Nickel	180	62	180	62
Selenium	14	2	14	2
Zinc	1,850	500	1,850	150
Fecal coliform (MPN g ⁻¹ dw)	< 1,000	< 1,000	< 2,000,000	Not required
Foreign matter (%)	< 1 dw, no sharp foreign	matter that can cause ir	ijury	
(%, dw)	Not required	Not required	Not required	< 0.6
C:N	Not required	<u>></u> 15:1& <u><</u> 35:1	Not required	> 15:1
Organic matter (%, dw)	Not required	Not required	Not required	<u>≤</u> 15
Sampling plan	Systematic, simple or stratified random	Systematic, simple or stratified random	Systematic, simple or stratified random	Simple random
Type of sample	Composite	Composite	Composite, 7 discrete samples for fecal coliform	Composite
Number of samples (minimum)	3 (each composed of 7 subsamples)	3 (each composed of 7 subsamples)	3 (each composed of 7 subsamples)	3 (each composed of 7 subsamples)

Direct application of Class A biosolids can occur for volumes less than 5 m^3 per parcel of land per year. For amounts greater than 5 m^3 , a land application plan must be completed prior to application. The land application plan must include the following:

¹ Standards for Metals in Fertilizers and Supplements, as amended from time to time, as adopted by Agriculture and Agri-Food Canada under the *Fertilizers Act* (Canada) and regulations.

- The location of the application site and written authorization from the registered owner;
- A description of the biosolids to be applied including physical characteristics, nutrient, fecal coliform, and trace element concentrations;
- Storage and leachate management requirements at the application site;
- The intended date application will commence and the application rate;
- The projected trace element concentrations in the soil after application;
- A post-application monitoring plan if the application rate exceeds annual crop; and
- Nutrient requirements.

However, OMRR-compliant biosolids growing medium (BGM) can be distributed with no volume restriction. Sampling of the BGM is required to determine compliance with the OMRR. Sampling and analysis must be completed at least every 1,000 dry tonnes (DT) of BGM or once per year, whichever occurs first.

2.2.2 Municipal Wastewater Regulation

The MWR does not specifically address biosolids management, with the exception of a treatment facility's reliability requirements (installed redundancy). In this case, the MWR specifies the number of units that are required for anaerobic and aerobic digesters only. For all reliability categories, a minimum of two anaerobic digesters are required to meet the redundancy requirements. Should the CRD implement technologies other than digestion, good practice would be to have redundancy to ensure the biosolids processing facilities to operate with a high degree of reliability receive solids from the liquid train on a continuous basis.

2.2.3 Liquid Waste Management Plan

The CRD's liquid waste management plan encourages the beneficial use of biosolids and recovery of resources. Biosolids treatment options for the CRD biosolids should consider these opportunities where practical and cost effective. LWMP amendment No. 8 identified Hartland landfill as the preferred site for biosolids treatment and processing.

3.0 BIOSOLIDS TREATMENT TECHNOLOGY OPTIONS

Several engineering firms have been involved in assessing biosolids treatment facilities as part of the evaluation of providing secondary or tertiary treatment facilities for the CRD. The availability of sites large enough for the liquid and/or biosolids treatment facilities has been the most challenging issue facing the CRD. Due to the lack of available sites large enough to site both liquid and biosolids treatment, the biosolids treatment has been decoupled from the liquid treatment and is assumed to occupy its own site at Hartland landfill. This site, although remote from the liquid treatment, is an ideal site for the future integration with MSW.

The engineering firms involved in the review of appropriate treatment technology are summarized as follows and the text below highlights the solids treatment technology that has been examined:

- Urban Systems/Carollo Engineers (2014 to 2016)
- Stantec Consulting (2009-2014)
- Peer Review Team (2009-2010)
- CH2M Hill/Associated Engineering/Kerr Wood Leidel (KWL) (2006-2009)

Urban Systems/Carollo Work Summary (2014-2016)

The most recent planning on conceptual treatment options has been completed by Urban Systems and Carollo Engineers. The solids treatment options shortlisted by Urban Systems/Carollo included aerobic digestion and dewatering, anaerobic digestion and dewatering, and drying and gasification. They reviewed the feasibility of siting these technologies at both the Rock Bay and Hartland sites.

Stantec Consulting Work Summary (2009-2015)

In 2009, Stantec were retained to provide Program Management and Technical Planning services for the Core Area Wastewater Treatment Program. Stantec refined the previous planning studies provided by CH₂M Hill/Associated Engineering/Kerr Wood Leidel (KWL) and evaluated a long list of solids treatment technology options. Stantec also prepared a comprehensive Biosolids Management Plan in 2009 which included assessment of emerging technologies including gasification, biofuel and integration with MSW.

Peer Review Team (2009-2010)

The Peer Review Team indicated that "anaerobic digestion is an appropriate choice for sludge processing as it is an efficient way to produce energy from wet sludge, to reduce solids mass, and to provide pathogen destruction."

CH2M Hill/Associated/KWL Work Summary (2006-2009)

A comprehensive review of solids treatment options was also undertaken by the CH_2M Hill/Associated/KWL team from 2006 -2009. They produced a long list of options ranging from willow coppice land application to thermophilic digestion technologies.

The technologies reviewed by both the Urban / Carollo, Stantec and CH_2M Hill/Associated/KWL teams are presented in the following section.

3.1 Long List of Technologies Reviewed to Date

Table 3.1 summarizes the treatment technologies that have been reviewed during the various planning studies including an opinion judgement on the suitability of the solids treatment technology for the CRD project. The use of proven technology is necessary to meet the regulatory and reliability requirements of the project. The suitability is mainly driven by end use of the finished biosolids and the requirement to implement a proven technology.

Technology	Implementation Considerations	Consider for CRD
Anaerobic Digestion (Thermophilic)	Commonly used stabilization process in North American treatment facilities to produce a Class A biosolid.	~
Anaerobic Digestion (Mesophilic)	Most commonly used stabilization process in North American treatment facilities and is capable of producing a Class B biosolid.	~
Landfill Biocell Reactors (with or without MSW using digested or undigested sludge)	Approach is not regulated under OMRR, and would require permitting. Requires large land area.	~
In-Vessel Composting (Residual or Digested Solids)	Less commonly used for larger facilities and requires significant movement of materials. Would require landfilling due to CRD policy.	~
Residual Solids Drying (Pelletization)	Creates end product that can be utilized in combustion or gasification processes.	~
Residual Solids Drying (Fuel for Cement Kiln or Wood Drying Kiln)	Long term viability is subject to long run viability of end user's business.	~
Digester Gas Utilization (Onsite Co- generation)	Becoming a commonly used approach for facilities with digestion.	~
Land Application or Mine Reclamation of Stabilized and Dewatered Biosolids	Approach used by Metro Vancouver, but long term viability may be limited due to site availability and hauling costs off-Island.	~
Biosolids Vitrification	Embryonic technology that is not proven on larger scale applications. Option eliminated for consideration.	×
Anaerobic Digestion (Thermophilic) - Soil Amendment	Challenge to find end user and goes against current CRD policy. Option eliminated for consideration.	×
Residual solids WTE Incineration (Fluidized Bed or Mass Burn)	Effectively eliminates end product requiring disposal, but permitting may be onerous and require schedule extension beyond 2020.	\checkmark

Table 3.1 - Summary of Solids Treatment Technologies

Table 3.1 - Summary of Solids Treatment Technologies (cont'd)

Technology	Implementation Considerations	Consider for CRD
Residual solids WTE Gasification (Synthetic Fuel Production)	Novel technology that is not proven on residual solids-only applications. Option eliminated for consideration.	×
Residual solids Integration with MSW or Wood Waste WTE (Gasification)	Better use of the application relative to residual solids-only feed stock. There is also a concern of the long term availability and cost of the feed stock if wood waste is utilized.	~
Augmentation of Digester Input with Fat, Oil, Grease (FOG) and Source Separated Organics (SSO)	For enhanced biogas production, this is becoming a more commonly used approach at facilities with existing or planned digesters.	~
Pre-processing for Optimizing Anaerobic Digestion (Thermal Hydrolysis Process)	Typically used for facilities where available footprint is an issue. Technology adds a more complicated process to the overall solids management train. Footprint is not an issue at Hartland. Option eliminated for consideration.	×
Land Application of Stabilized Biosolids – Willow Coppice (High Rate Wood Fuel Biomass Production)	Approach has had limited use and is subject to land availability and possible third party service provider. It also goes against current CRD policy. Option eliminated for consideration.	×
Lime Stabilization - In Vessel Process	Process familiar to the CRD, but creates additional waste material that must be disposed of/utilized. Can produce Class A biosolids.	✓
Co-Composting Residual solids with Yard Waste and/or SSOs	Less commonly used for larger facilities and requires significant movement of materials	✓
Resource Recovery from Biosolids - Biomethane Optimization (Fleet Vehicles)	This approach is not commonly used for municipalities that have facilities with existing or planned digesters. It is often ruled out based on a business case evaluation and requirement to convert vehicles to biogas operation. Natural gas prices have been low for a number of years.	~
Clean up Biogas and Feed to Gas Utility	This approach is not commonly used for municipalities that have facilities with existing or planned digesters. It offers a significant carbon offset but is often ruled out based on the significant investment required for cleaning up the biogas to a standard that is acceptable by the gas utility. Natural gas prices have been low and a forecast to be low for a number of years so it is difficult to justify from a business case perspective.	~
Geotube Dewatering and Storage	This technology works well for partially stabilized residual solids from lagoons, but would not be very practical for a facility of this size or for the use of residual solids. Difficult operationally. Option eliminated for consideration.	×

3.2 Technology Carried in Current Funding Agreement and Procurement Approach

As part of the indicative design undertaken for the procurement phase of the Core Area WWTP, a potential approach for solids management was developed. This approach involved the following components:

- Pumping of residual solids (0.5 to 1% total solids) to the Hartland site
- Thickening of residual solids (4 to 5% total solids)
- Thermophilic anaerobic digestion of residual solids to produce Class A biosolids
- Dewatering of biosolids (25 to 30% total solids)
- Drying of dewatered biosolids (85 to 90% total solids)
- Pelletization of dried biosolids
- Hauling of pelletized product off-site for use as a fuel by a third party
- Ancillary processes struvite recovery, biogas scrubbing

The technology approach is illustrated in Figure 3.1.

The procurement approach carried in the CRD Business Plan and funding applications has used Design-Build Finance Operate Maintain procurement. This is the same procurement model as was previously considered for the Seaterra Program. The term for this type of procurement would be at least 20 years to secure interest in the project from the private sector. A detailed procurement analysis was previously completed by Ernst and Young (2012) to select the appropriate project delivery method.

Figure 3.1 - Funded Solids Management Approach

This approach was developed to provide for future flexibility with regards to the utilization of the dried pellets produced by the process. The base case relied upon the pellets being hauled offsite for use as a fuel at either a cement kiln or other thermal process. In the future, if gasification processes are proven to be more reliable, the pellets could be utilized as a feedstock for a biosolids-only or a mixed biosolids/MSW feedstock to a gasification unit. This option does place reliance on a third party to accept the dried pellets until such time that other means of disposal are available that are under the control of the CRD.

3.3 Considerations of Technology Selection for IRM

A common thread amongst many of the processes outlined in **Table 3.1** is their ability to either provide resource recovery or be part of IRM opportunities. Many of the options also have the capability for beneficial reuse. With all of the processes that include anaerobic digestion, opportunities exist to generate, capture and utilize biogas. The utilization of biogas can include the production of heat for the overall residual solids treatment process including fuel to fire boilers, cogeneration for the production of electricity that can either be used internally for the biosolids management process or can be sold to the electrical grid, upgrading the biogas so it can be used to power fleet vehicles, and the scrubbing of the biogas to produce a quality suitable for mixing with utility pipeline quality natural gas.

Composting, anaerobic digestion and lime stabilization all produce an end product that can be used as a resource for the production of growing media, landfill cover, and media for mine and forest land reclamation. Current CRD policy however precludes the consideration of any of these land application options. Biosolids that are dried and made into pellets can also be used as a fuel that can be utilized in kilns, incinerators or gasifiers. Dried biosolids can also be used as a fertilizer supplement.

The biggest opportunity for IRM at the CRD exists with the potential integration of the various waste streams that may be available at the Hartland landfill. The Hartland site provides an excellent opportunity and location for such a facility. IRM can include any process which can combine municipal solid waste (MSW), fats/oils/grease (FOG) or source separated organics (SSOs) with the biosolids as a process feedstock. These combined streams could be incorporated into anaerobic co-digestion, co-composting, waste to energy (WTE), or gasification processes. Most of these processes will benefit from the added waste stream into the process feedstock, but each can also provide processing challenges and operating and commercial revenue risks.

3.4 Emerging Gasification Technology

Gasification is a chemical-physical process in which compounds are broken down to their elements and reformed into combustible syngas compounds including methane, carbon monoxide and hydrogen. The process occurs at high temperatures with very little oxygen present. This limits combustion of the feedstock material (in this case biosolids). The forming of the syngas occurs between 850°C to 1,200°C. The operation of a gasifier is more complex than other processes typically found in biosolids processing.

Gasification is widely used for processing dry high energy wastes into syngas. There have been several attempts at utilizing this technology to process biosolids in both short term pilot programs and full scale operations. In the full scale operations there have been very few successes and most have been with additional feedstocks. **Table 3.2** below summarizes some of the full scale operations:

Project Owner	Location	Gasifier Type	Capacity (Maximum)	Operations Status
Full-Scale Installation	ons			
EcoTech Gasification (private developer)	Philadelphia, PA	Downdraft Fixed Bed (Primenergy)	Approximately 1.8 dry tonnes/hr	Started June 2005, currently not operating vendor no longer in business
MaxWest Environmental Systems, Inc.	Sanford, FL	Originally Updraft Fixed Bed, converted to fluidized bed in 2012	0.6 dry tonnes/hr	Fall 2009 began operations currently not operating vendor no longer in business
MaxWest Environmental Systems, Inc.	Plymouth, ME	Fluidized Bed	1.3 dry tonnes/hr	Project dropped vendor no longer in business
Kopf (demonstration facility) ³	Balingen, Germany	Bubbling fluidized bed	0.11 dry tonnes/hr Upgraded to 0.22 dry tonnes/hr in 2010	Started 2002, rebuilt in 2010, still in operation
Kopf (commercial installation) ²	Mannheim , Germany	Bubbling fluidized bed	0.57 dry tonnes/hr to be expanded to 1.14 in the future	Began commissioning phase in 2010
Tokyo Bureau of Sewerage	Kiyose, Japan	Circulating Fluidized Bed	Approximately 0.75 dry tonnes/hr	Started in July 2010, presumed to still be in operation
PHG Energy	Covington, Tennessee	Updraft Fixed bed	10 tons/day wood waste 2 tons/day biosolids	Under construction

Table 3.2 -	Summary	of Full Scale	Biosolids	Gasification	Facilities
	Juillinuiy	OF Full Scule	DIOSOIIUS	Guanicunon	Fucilities

It is worth noting that the Tokyo system is used to reduce gas usage and greenhouse gas emissions from their incinerator. The Kopf plant is less than half the size of that required for CRD. The MaxWest Sanford facility used biosolids as a feedstock and was shut down because the vendor is no longer in business because the operation was not financially viable.

All of the installations listed above require the biosolids to be dried to about 90% solids prior to gasification. Therefore a dewatering process and a dryer must be upstream of gasification process. In the MaxWest system the syngas was burned directly and the heat generated was used in the dryer. There was no electricity production and the system acted as a closed loop disposal operation. In the Kopf facilities the drying is done separately and is outside the energy balance of the system. Thus the gas produced can be cleaned and burned in a generator to create electricity. This would not be the case for the CRD.

There is a low temperature aqueous gasification process marketed by Genifuels that can gasify dewatered biosolids in a two stage process. In the first stage a biocrude liquid is produced that can be refined to a fuel. In the second stage syngas is created with the aid of a catalyst. This technology is only in the pilot stage. Metro Vancouver's Annacis Island Wastewater Treatment Plant will be piloting the first stage only of this process in the near future. They felt the first stage produced most of the energy value of the system.

Pyrolysis is the first stage of the gasification process and occurs at around 700°C. In pyrolysis the compounds are broken down but not reformed. Some syngas is released through volatilization of combustible compounds in the feedstock. The end product of the system is a char that is easily dewatered. If the char is dry it can be burned to produce heat that can be used in the drying process and potentially to produce energy. There has only been one large scale pyrolysis facility treating biosolids. A 300 to 600 ton per day facility utilizing the Enertech pyrolysis process was constructed to operate commercially in Rialto, California. The facility processed dewatered biosolids to produce liquid char slurry that was dewatered and dried to be used as a fuel in cement kilns. The facility went out of business and is now closed with no plans to restart operations.

Thames water is in the process of building a pilot unit for a different pyrolysis process marketed by Aqology. The system processes biosolids that have been dried and produces char that is burned to produce heat for the dryer and potentially to produce energy as well. The pilot is expected to be operational in 2017.

CRD has expressed interest in potentially gasifying MSW with biosolids as part of an integrated waste management plan. This would be an issue for the gasifiers utilized for biosolids so far due to the heterogeneous nature of the character of Municipal Solid Waste (MSW). Different materials have different ash melting temperatures. The ash melting temperature is the point at which slag is generated. Slag in the gasifiers utilizing plasma torches to generate heat have been developed to gasify MSW. In England the Tees Valley gasification facility was under construction to gasify MSW using plasma gasifiers. The first gasifier was completed and operations begun with it while the second and third gasifiers were constructed. However, the first unit was not successful and before completion of the second gasifier and investing close to a billion dollars the developer of the project abandoned the facility.

Successful use of gasification technologies for biosolids processing is limited at this time. While refinement to the technology continues to occur, there is no facility successfully operating that includes under its energy balance all of processes that the CRD would need to incorporate in a full scale facility. There are also issues related to emissions from gasifiers. Testing of air emission at the MaxWest facility demonstrated that facilities similar in size to that required by the CRD would potentially need to scrub the emissions for NOx and HCI removal. The performance of gasification on biosolids applications has met with mixed results and many of the facilities have had operational difficulties and have been shut down. At this time we would recommend CRD not consider gasification as there is no long term proven track record for the technology at the scale required for the solids processing facility. Other options such as thermal destruction (incineration) have a longer term operations track record and better reliability. These systems also have a better track record on combined MSW and biosolids.

If and when the technology performance and reliability improves in the future as a result of further technology refinement and longer term proven operating experience, the CRD could consider gasification as an add-on process for biosolids and MSW.

4.0 BIOSOLIDS OPTIONS ANALYSIS AND DISCUSSION

4.1 **Biosolids Options Screening Approach**

An initial analysis of the option sets produced by the engineering consulting teams noted in Section 3.0 was conducted, and a total of 20 options were summarized for evaluation. The screening process included input from a diverse team of discipline specialists with backgrounds in biosolids treatment, operations, construction, legal, business and financial analysis. The 20 options were first evaluated using a high level screening process which did not consider cost or schedule to provide an objective evaluation of all options.

All options were screened in consideration of the following factors:

- 1. **Proven Technology** the proposed technology must have a track record of reliable operation for several years to a scale similar to CRD;
- 2. Land Application technology that does not rely on land application as the sole means of final disposal to be in accordance with the CRD's policy on land application;
- 3. **Feed Stock or Disposal** technology that does not rely on third parties to provide co-processing feedstock or means of final product disposal/re-use; and
- 4. **Integration with MSW** ability of the technology to be integrated with future IRM strategy incorporating municipal solid waste in a co-processing facility.

This screening approach is illustrated in Figure 4.1.

Figure 4.1 – Screening Approach

	The technology op	tions evaluated	using the fir	rst phase of	screening were:
--	-------------------	-----------------	---------------	--------------	-----------------

No.	Option	Pass / Fail
1	Anaerobic digestion and biosolids drying (pelletization for multiple uses, struvite recovery, biogas conditioning)	Pass
2	Anaerobic digestion / biosolids drying(scaled back version of funded biosolids management approach)	Pass
3	Residual solids drying (pelletization)	Pass
4	Anaerobic digested biosolids (with or without MSW) / biocell reactors	Pass
5	Undigested residual solids with or without MSW) / biocell reactors	Pass
6	Residual solids thermal destruction	Pass
7	In-vessel composting (residual solids or biosolids)	Fail
8	Anaerobic digestion and biosolids drying (fuel for cement kiln or wood drying kiln)	Fail
9	Residual solids drying (fuel for cement kiln or wood drying kiln)	Fail
10	Land application or mine reclamation of stabilized and dewatered biosolids	Fail
11	Biosolids vitrification	Fail
12	Anaerobic digestion (thermophilic) - soil amendment	Fail
13	Residual solids integration with MSW WTE incineration (fluidized bed or mass burn)	Fail
14	Residual solids WTE gasification (synthetic fuel production)	Fail
15	Residual solid integration with MSW (gasification)	Fail
16	Residual solids integration with wood waste WTE (gasification)	Fail
17	Land application of biosolids – Willow Coppice (high rate wood fuel biomass production)	Fail
18	Lime stabilization – in-vessel process	Fail
19	Co-composting residual solids with yard waste and/or SSOs	Fail
20	Geotube dewatering and storage	Fail

After the first phase of screening, 14 of the 20 initial options were eliminated (options shaded as white in **Table 4.1**). The six remaining options (shaded in green) and one sub-option of one of the short-listed options were advanced for costing and TBL evaluation. This was to be expected, as the majority of the eliminated options rely on land application as the sole means of disposal. The options utilizing gasification were

screened out as this technology is not considered proven in the context of using biosolids alone. While it is recognized that the technology has potential, we would not recommend that the CRD consider gasification as the only means of managing biosolids as there is no long term proven operating record for the technology at the scale required for this facility. If and when the technology performance and reliability improves as a result of further technology refinement and longer term operating experience, the CRD could consider gasification as an add-on process. The CRD could also consider thermal processing technologies such as WTE as part of an integrated MSW / biosolids solution. As noted below, potential for future use of this and other technologies to facilitate IRM was an important consideration of the Project Board in its final assessment of the options.

Future changes in beneficial reuse policy by the CRD would enable options where beneficial products are produced to be reconsidered in the future.

Option #	Option Description	Screen 1 Proven Technology	Screen 2 Land Application	Screen 3 Feed Stock / Disposal Availability	Screen 4 Integration with MSW	Comment
1	Anaerobic digestion and biosolids drying (pelletization for multiple uses), struvite recovery and biogas conditioning	Pass	Pass	Pass	Pass	Technology currently carried in funding agreements.
2	Anaerobic digestion and biosolids drying	Pass	Pass	Pass	Pass	This is a modified version of the technology carried in the funding agreements.
3	Residual solids drying (pelletization)	Pass	Pass	Pass	Pass	Can produce a Class A biosolid but requires significant gas for drying
4	Anaerobic digested biosolids (with or without MSW) / biocell reactors	Pass	Pass	Pass	Pass	This option will use up landfill capacity unless policy for land application changes in future.
5	Undigested residual solids (with or without MSW) / biocell reactors	Pass	Pass	Pass	Pass	Passes all 4 screens, but permitting may be a challenge for a longer term solution.
6	Residual solids thermal destruction	Pass	Pass	Pass	Pass	Biosolids incinerated to produce minor amounts of energy.
7	In-vessel composting (residual solids or biosolids)	Pass	Fail	Fail	Fail	Option eliminated because it requires external feedstock
8	Anaerobic digestion and biosolids drying (fuel for cement kiln or wood drying kiln)	Pass	Pass	Fail	Fail	Concern with reliance on third parties that may not be viable over the longer term.
9	Residual solids drying (fuel for cement kiln or wood drying kiln)	Pass	Pass	Fail	Pass	Concern with reliance on third parties that may not be viable over the longer term.
10	Land application or mine reclamation of dewatered biosolids	Pass	Fail	Pass	Fail	Does not meet CRD policy for no land application

Table 4.1 - Summary of 20 Options Considered for Initial Screening - Residual Solids Management

Option #	Option Description	Screen 1 Proven Technolog Y	Screen 2 Land Applicatio n	Screen 3 Feed Stock / Disposal Availabilit y	Screen 4 Integratio n with MSW	Comment
11	Biosolids vitrification	Fail	Pass	Pass	Fail	Process has not been proven for larger scale facilities.
12	Anaerobic digestion (thermophilic) - soil amendment	Pass	Fail	Pass	Pass	Does not meet CRD policy for no land application
13	Residual solids WTE incineration (fluidized bed or mass burn)	Pass	Pass	Pass	Fail	Does not meet MSW integration requirements
14	Residual solids WTE gasification (synthetic fuel production)	Fail	Pass	Pass	Fail	Current state of gasification process technology is unproven using residual solids as a single source of fuel.
15	Residual solids integration with MSW (gasification)	Fail	Pass	Pass	Pass	Experience with integration of residual solids and MSW in gasifier is limited.
16	Residual solids integration with wood waste WTE (gasification)	Fail	Pass	Fail	Fail	Reliance on external source of wood beyond control of CRD with uncertain pricing and availability.
17	Land application of biosolids – Willow Coppice (high rate wood fuel biomass production)	Pass	Fail	Fail	Fail	Concern with reliance on a third party that may not be viable over the longer term.
18	Lime stabilization – In-vessel process	Pass	Fail	Pass	Fail	Does not meet CRD policy for no land application, can be operations intensive
19	Co-composting residual solids with yard waste and/or SSOs	Pass	Fail	Pass	Pass	Does not meet CRD policy for no land application, can be odourous
20	Geotube dewatering and storage	Fail	Pass	Pass	Fail	Can only be fed with treatment plant residual solids and is odourous.

Table 4.1 - Summary of 20 Options Considered for Initial Screening - Residual Solids Management (cont'd)

4.2 Short List of Technology Options

Using the screening protocol described above, a short list of six options was developed. The screening of the 20 options produced 6 viable options (those shown shaded as green in **Table 4.1**). A lower cost sub-option of Option 4, Option 4a was also assessed as a cost saving measure. This option involves the use of insulated steel tanks, common in many European installations for the digester tanks.

The seven options carried forward for costing and triple bottom line analysis were:

- 1. Anaerobic digestion, biosolids drying (pelletization for multiple uses), struvite recovery and biogas conditioning
- 2. Anaerobic digestion with biosolids drying
- 3. Residual solids drying (pelletization)
- 4. Anaerobic digestion/ biocell reactors (with or without MSW)
- 4a. Anaerobic digestion (steel tanks) / biocell reactors (with or without MSW)
- 5 Undigested residual solids biocell reactors (residual solids with or without MSW)
- 6 Residual solids thermal destruction

4.2.1 Carbon Footprint of Short Listed Technology Options

According to the 2007 British Columbia GHG Inventory report, 0.1% of provincial emissions are from wastewater treatment operations. If managed appropriately, the biosolids management program is one way in which a municipality can offset operation emissions and accrue carbon credits. The credits will enable a municipality to achieve a net carbon footprint of zero more easily. The carbon footprint of anaerobic digestion facilities can be reduced by recovery of biogas and use for operation, heating and electricity generation. Note that options which rely on transportation of biosolids for long distances can have a significant negative impact on carbon footprint.

Carbon footprint analysis methodologies can vary widely. The Canadian Council of Ministers of the Environment (CCME) has published the Biosolids Emissions Assessment Model (BEAM): A Method for Determining Greenhouse Gas Emissions from Canadian Biosolids Management Practices (CCME 2009). BEAM was evaluated and consistent methodology and emissions factors were used for this report.

The three GHGs relevant to biosolids management are carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O). The direct and indirect emissions and offsets of these GHGs are included in the carbon footprint analysis.

- Carbon dioxide CO₂ enters the atmosphere by burning carbonaceous substances such as fossil fuels (oil, natural gas, and coal), solid waste, and trees, and as a by-product of chemical reactions (e.g., the manufacture of cement). CO₂ is also removed from the atmosphere (or sequestered) when it is absorbed by plants or stored in the soil as part of the biological carbon cycle.
- Methane CH₄ is emitted during the production and transport of coal, natural gas, and oil. CH₄ is also produced from the anaerobic digestion of waste at wastewater treatment facilities, by livestock, and by the decay of organic waste in MSW landfills.

• Nitrous oxide – N₂O is emitted by agricultural and industrial activities, combustion of fossil fuels and solid waste, and through secondary biological nutrient removal wastewater treatment processes.

GHG emissions can occur from anthropogenic or biogenic sources. Anthropogenic emissions are produced by human activities that remove sequestered carbon from the earth's crust and release it to the atmosphere (e.g., through the burning of fossil fuels). Biogenic carbon occurs in plants and animals that intake and dispense of carbon cyclically. Biogenic sources do not increase the amount of GHGs in the atmosphere, but merely represent the "natural" cycling of carbon. Therefore, emissions of biogenic CO_2 are generally not accounted for in GHG inventories for wastewater treatment. In fact, biogenic carbon sources can be considered an offset when utilized in place of an anthropogenic source (for example, when using biogas from a wastewater treatment process as a fuel source in place of natural gas).

Once GHGs are emitted into the atmosphere, they absorb and re-radiate heat with varied levels of effectiveness. The global warming potential (GWP) quantifies the contribution of each gas over a specific time interval in terms of CO_2 . The GWP of CO_2 , by definition, is 1. The 100-year GWP values of CO_2 , CH_4 , and N_2O are shown below, based on the 2007 British Columbia Greenhouse Gas Inventory report:

- CO₂ GWP = 1 equivalent kg of CO₂
- CH₄ GWP = 21 equivalent kg of CO₂
- $N_2O GWP = 310 equivalent kg of CO_2$

At this screening level for the technology alternatives the intent is not to complete a full accounting of the likely GHG emissions for each, but rather provide a relative measure for each of the six shortlisted options. In previous planning work this type of analysis was undertaken, but significant GHG credit was provided for several of the alternatives where processed biosolids were to be used as a soil amendment. Since the practice of land application is not accepted by the CRD, this GHG offset credit cannot be applied. The carbon footprint for each shortlisted option is:

- 1. Anaerobic digestion, biosolids drying (pelletization for multiple uses), struvite recovery and biogas conditioning- (5,118) tonnes/yr CO2e credit
- 2. Anaerobic digestion with biosolids drying- (5,147) tonnes/yr CO2e credit
- 3. Residual solids drying (pelletization) -723 tonnes/yr CO2e impact
- 4. Anaerobic digestion/ biocell reactors (with or without MSW) (4,762) tonnes/yr CO2e credit
- 4a. Anaerobic digestion (steel tanks) / biocell reactors (with or without MSW) (4,762) tonnes/yr CO2e credit
- 5 Undigested residual solids biocell reactors (residual solids with or without MSW) 2,586 tonnes/yr CO2e impact
- 6 Residual solids thermal destruction 864 tonnes/yr CO2e impact

This ranking assumes GHG offsets would be available based on the quantity of biogas that would be produced or the quantity of electricity that could be generated by each of the options. The landfill options are not as readily quantifiable as it is not clear what degree of biogas could be captured from this type of operation.

4.2.2 Biosolids Treatment Site

The new biosolids treatment facilities, regardless of technology ultimately selected will be located at the Hartland Landfill site. Other sites in closer proximity to liquid treatment sites currently under consideration have been reviewed in previous studies and none have been found to be available or viable. The Hartland site provides good access and is located remote from concentrated residential development. There is sufficient space available to build and expand biosolids facilities in the future at this site. The site also provides good opportunities for synergies with the municipal solid waste program and future integrated resource management for biosolids and MSW waste streams.

4.2.3 Residual Solids Pipeline

A residual solids pipeline and pumping stations will be required to convey residual solids to the Hartland site. The pipeline would be approximately 200 mm in diameter and would require up to 4 pumping stations because of the elevation lift to Hartland. The pump stations will relatively small and similar to package type lift stations currently in the sewage collection system. They will include odour control facilities. Chemical addition provisions at the treatment plant and pump stations will be provided for hydrogen sulphide and methane control.

4.3 Facility Staging for Ultimate IRM

Throughout the planning process over the past ten years, there has been recognition of the potential synergies between the resource recovery and disposal needs of biosolids and municipal solid waste (MSW). As such, the CRD has adopted the goal of integrating biosolids management with the existing MSW program to the extent practical and beneficial. As noted in the previous sections, there are several opportunities for accomplishing this, ranging from direct disposal of biosolids in the landfill, co-digestion of suitable source separated organic wastes with biosolids, FOG, co-combustion in a WTE facility, and co-composting. This section describes how biosolids management alternatives could be integrated with the MSW program in a staged process.

As indicated in previous planning work, the best site to integrate biosolids management with the MSW program would be at the Hartland Landfill site. This would allow the biosolids management facility to be constructed in an area where land is available and over one kilometre away from the nearest resident. It will allow for ease of integration with any future MSW strategy that may be implemented by the CRD in the future.

All of the short listed options were chosen for their ability to be incorporated into a future overall integrated waste management program at the Hartland site. Any number of staging strategies can be utilized to allow for future incorporation of MSW. For the options that include solids drying and pelletization, they all produce a dry, readily useable fuel source that can be incorporated with MSW in either an incineration or gasification process in the future. The challenge will be in finding a disposal site / end user for the pellets in the interim. This could be a cement kiln, lumber drying operation or other thermal co-generation facility, assuming a facility is available and will accept the fuel on reasonable commercial terms. The other three shortlisted options rely on the storage of residual solids or biosolids in biocells at the landfill. These options have the advantage of being under complete control of the CRD. This is viewed as an interim option, although biosolids could be "mined" in the future for other beneficial use. This option also occupies valuable landfill

space and may not be a practical long term solution. Until such time that MSW and biosolids are fully integrated, this option does provide a viable solution.

4.4 Biocell Disposal

Given the current CRD policy on land application, the CRD must have a reliable disposal method for biosolids for the time period until integration with MSW is fully planned and implemented. Recognizing that full integration can take some time, a reliable disposable option is required. One potential option is a biocell.

A biocell is a closed loop landfill reactor system that is operated in three stages. In the first stage, the bioreactor mimics an anaerobic digester to capture biogas released from decomposing biosolids mixed with solid wastes or the organic fraction of solid wastes. The captured gas can then be converted to power. The anaerobic stage is maintained at a critical moisture level through leachate recirculation. After 5–6 years, the gas generation rate decreases and the biocell is converted to an aerobic composting system. Air is injected into the solid waste using the same infrastructure used for gas collection. The aerobic phase occurs until the waste is sufficiently stabilized, approximately 1–2 years. The cell can then be mined for compost material and other recyclables. Multiple cells will be operated consecutively, so that each cell can be in composting, mining, or filling phases. Such as system would be ideally suited to the Hartland landfill location.

Biocells are designed with the following components: groundwater control system, composite liner, leachate collection system, liquid/leachate injection system, landfill gas collection/air injection system, bio-cap intermediate covers to oxidize methane (CH₄), final cover system, and a monitor sensor system. A schematic of a biocell is illustrated in **Figure 4.2**.

Figure 4.2 - Schematic of Biocell

A biocell provides multiple advantages over a traditional landfill system. The system enhances anaerobic microbial action, resulting in increased gas capture and power production. Stabilization of waste occurs in a shorter period of time. Also, compost material and other recyclables are recovered during the "mining" stage. Finally, the space and infrastructure within the reactor is reusable.

For the CRD sufficient biocell capacity would be provided to store biosolids in multiple cells. The cells would be mined after 5 years and products could be incorporated into a beneficial reuse program or used as landfill cover.

4.5 Schedule Consideration

All of the short-listed options can be procured, constructed and commissioned prior to December 31, 2020. The biosolids will be procured using a separate design build finance operate maintain contract. Schedules prepared for the short-listed liquid train treatment options are included in this report in **Appendix C**. The schedules include the biosolids treatment facilities and the interrelationship with the liquid treatment construction. The biosolids facility must be available to receive residual solids from the liquid plant when it is commissioned. The biosolids treatment facility would be wet tested prior to liquid train commissioning and would be ready to receive residual solids from the liquid train.

5.0 OPINION OF PROBABLE COSTS

5.1 Cost Estimate Basis

Capital costs have been prepared using the same approach as used for the liquid train assessment for direct and indirect costs, financing and inflation to mid-point of construction.

5.2 Capital Costs and Whole Life Cycle Costs

The capital costs (rounded) for each alternative are summarized in **Table 5.1** with detailed cost estimate appended to this report.

Table 5.1 - Life Cycle Costs

Option	Capital Cost	Annual Operations and Maintenance Cost	Life Cycle Cost*
Option 1 – Anaerobic digestion, drying, gas recovery, nutrient recovery (previously funded case)	\$ 267,000,000	\$ 3,021,000	\$ 314,200,000
Option 2 – Anaerobic digestion, drying (with no gas scrubbing for utility sale and no nutrient recovery)	\$ 224,000,000	\$ 4,060,000	\$ 287,200,000
Option 3 – Residual solids drying (pelletization)	\$ 188,252,000	\$ 4,405,845	\$ 257,080,000
Option 4 – Anaerobic digestion biocell reactors (with or without MSW)	\$ 165,557,000	\$ 2,631,000	\$ 206,700,000
Option 4a – Anaerobic digester (steel tanks) / biocell reactors (with or without MSW)	\$ 143,646,000	\$ 2,631,000	\$ 184,800,000
Option 5 – Undigested residual solids / biocell reactors (with or without MSW)	\$ 104,153,000	\$ 3,483,000	\$ 158,600,000
Option 6 – Residual solids thermal destruction	\$ 223,997,000	\$ 3,259,030	\$ 274,900,000

* Life Cycle Cost based on 25 year period and 4% discount rate. Discount rate is consistent with discount rate selected by Project Board for liquid assessment. Costs are engineering estimates and do not include development costs or retained risk costs.
5.3 Discussion on Life Cycle Costs

The three options that involve the residual solids going to a landfill in a biocell (Options 4, 4a and 5) are the overall lowest cost but Option 5 may have permitting and other issues related to handling undigested residual solids in an open area. Option 4 and 4a have the advantage of providing a Class A biosolids which could be used for future beneficial use if there is a policy change regarding beneficial reuse of biosolids. Option 4 and 4a also produce biogas which will be used for heating the digesters and buildings with surplus gas being available to the CRD for expansion of their existing co-generation system at the Hartland Landfill. Option 4a results in significant capital cost savings due to use of bolted steel tanks and pre-engineered buildings. Option 3 is the next lowest overall cost after Options 4 and 5. Option 1 has the highest cost but has the lowest O&M due to the potential for cost recovery from the biogas produced and sale to the utility.

6.0 TRIPLE BOTTOM LINE ASSESSMENT

6.1 Approach

Seven biosolids treatment options were assessed using a triple bottom line (TBL) framework. The TBL considers economic, environmental and social criteria to provide balanced decision making. Many

organizations including Metro Vancouver and BC Hydro have adopted the TBL framework to evaluate their performance in a broader perspective to create greater business value in consideration of non-monetary social and environmental criteria.

Municipal officials across Canada increasingly recognize that sustainable projects benefit not only the environment, but also the economy and society at large. For this reason, FCM promotes and measures Green Municipal Fund (GMF) project impacts using a triple bottom line approach — one that considers criteria from all three areas. The combined and often complementary effects of project benefits lead to tangible improvements at the community level — cleaner water, better municipal services, and more efficient use of resources such as energy. Understanding the economic, environmental and social considerations of a specific option can assist in evaluation.

 Economic Criteria – This category includes the capital and whole life cycle costs for each option. The whole life cycle costs have been calculated using a 4% discount rate over a period of 25 years.

- **Environmental Criteria** This category includes a number of criteria associated with the environmental performance of the specific option. Some factors include ability to meet regulatory compliance, carbon footprint and other environmental criteria.
- **Social Criteria** Social criteria include items which have a social impact on the public. This could include items such as operational traffic noise and odour.

6.2 Evaluation of Qualitative Criteria

A qualitative assessment and scoring of criteria was completed in each of the environmental and social categories. Economic criteria were not scored but information was provided to be considered in the overall TBL assessment. Each of the options was assessed using a listing of considerations and evidence provided to support the conclusions reached. The considerations and evidence are included **Appendix A**.

The evaluation was completed by the technical team and included input from the Project Board, CRD and a diverse team of legal, financial and business specialists.

As an example of social criteria, low construction impacts are considered preferable to moderate or high impacts. In the instance of construction impacts the characteristics of a particular option many be ranked (e.g., very good, good, average, fair, poor) based on characteristics such as noise, proximity to residential areas, requirements for transporting materials through residential or urban areas, need for blasting, excavation, etc. In this case little or no impact may be considered 'very good', whereas significant impacts may be considered 'poor', and therefore the low impact option would be ranked higher.

Ranking in this manner can also accommodate the assignment of a numerical result (e.g., from 1–5, corresponding to Poor to Very Good), to facilitate presentation of the results for an overall numerical outcome to support selecting a preferred option.

Very Good (5)	Good (4)	Average (3)	Fair (2)	Poor (1)
Exceeds the requirements of the criterion.	Meets the requirements of the criterion.	Meets the basic requirements of the criterion.	Minimally meets basic requirements.	Option fails to meet basic requirements of the criterion.

These numerical rankings are combined with weightings to arrive at an overall ranking. The Project Board applied one of the following weightings to each criterion:

- Very Important (3)
- Important (2)
- Somewhat Important (1)

The ranking and weighting were then applied to a TBL model to arrive at an overall assessment of each of the options. The economic criteria were not scored to ensure that the environmental and social criteria were given objective consideration. The results of the TBL evaluation are provided in **Table 6.1** (weighted) and **Table 6.2** (unweighted).

6.3 Triple Bottom Line Results

Scoring completed indicates the current base case under the funding agreement provides the highest TBL in the absence of economic considerations. This option is also the most expensive capital and life cycle option. A second option which also scores high is the anaerobic digestion without biogas scrubbing and nutrient recovery Options 4 and 4a anaerobic digestion with disposal to a biocell provided reasonable triple bottom line results. Option 4a involves the use of insulated bolted steel tanks for the digesters and provides a cost effective solution that will produce a Class A biosolid with significant flexibility for future end use. The Project Board will have to assess the economic implications of each option in the TBL assessment and selection of a preferred option (s) for consideration.

Table 6.1 - Triple Bottom Line Assessment Framework (Weighted)

		Evaluation Weighted Evaluation	Quantitative								
		weighted Evaluation	wegneu	Criteria							
Criteria	No.	Criteria Categories	Measure Description	Weight	1	2	3	4	4a	5	6
			Biosolids Treatment Technology		Anaerobic Digestion + Dryer + Gas Scrubbing and Nutrient Recovery	Anaerobic Digestion + Dryer No Gas Scrubbing or Nutrient Recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
<u>ic</u>	EC-01	Capital Costs	Construction costs including both direct and indirect costs in 2016 dollars		\$267 M	\$224 M	\$188 M	\$166	\$144	\$104 M	\$224 M
conom	EC-02	Whole Life Cycle Costs	Capital, operating and maintenance costs		\$314 M	\$287 M	\$257 M	\$206 M	\$185 M	\$159 M	\$275 M
ŭ	EC-05	Schedule of Completion	Options which extend over a longer period and cause schedule impact costs		31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2022
				Economic							
	EN-01	Carbon Footprint / GHG	Tons of eCO2 created	3	15	12	9	12	12	3	6
	EN-02	Meets or Exceed Regulatory Requirements	Treatment Process Meets Regulatory Requirements	3	15	12	12	12	12	3	9
	EN-03	Redundancy	Does Option meet the Reliability criteria specified in the Municipal Wastewater Regulations	3	12	12	12	12	12	6	9
	EN-04	Resource Recovery Beneficial Reuse	Do recovered resources have flexibility for beneficial reuse	2	10	8	6	8	8	4	6
-	EN-05	Future Potential for Integrated Resource Management with M	Suitability of the solids treatment process to integrate with Integrated Resource Management (IRM) system	3	15	12	9	9	9	6	6
menta	EN-06	Permitting Requirements	Complexity of permitting and approvals processes	2	10	10	6	8	8	4	4
lviron	EN-07	Energy recovery	Does the process recover reusable energy - biogas/methane/syngas or heat	2	10	8	4	6	6	4	4
ũ	EN-08	Leachate/Wastewater Production	Degree that the Option produces leachate or wastewater which must be treated	1	3	3	3	2	2	2	3
	EN-09	Environmental Controls (Air)	Does process require advanced air emission controls	2	8	8	4	6	6	4	4
	EN-10	Track Record of Performance	Does process have a proven track record of performance as specified in the draft P3 Canada agreement	3	15	15	9	12	12	6	12
	EN-11	Terrestrial Impacts	Impact that a given site would have on existing terrestrial habitat	2	8	8	8	6	6	6	8
			Environmental Subtotal: 130 Po	ints Maximum	121	108	82	93	93	48	71
	SO-01	Operations Traffic	Amount of traffic nuisance caused to neighbouring residents post construction	1	4	4	3	2	2	1	5
	SO-02	Operations Impact on Local Community	Noise, dust and vibration inconvenience	2	8	8	8	8	8	8	8
	SO-03	Odour Impact on Local Community	Potential odour impact on nearby residential/commercial properties	3	12	12	6	9	9	6	6
	SO-04	Health and Safety - Workplace and Public	Potential workplace and public health and safety issues	3	12	12	9	9	9	6	9
	SO-05	Construction Impacts (Solids Conveyance)	Disruption to community during construction phase	1	3	3	3	3	3	3	3
cial	SO-06	Construction Impacts (Treatment)	Disruption to community during construction phase	1	4	4	4	4	4	4	4
Soc	SO-07	Ease of Operations	Complexity of technology to maintain operational performance	2	6	6	6	8	8	6	8
	SO-08	Compatibility with Official Community Plan	Degree of planning activity to amend OCP, zoning and Development Permitting	2	6	6	6	6	6	6	2
	SO-09	Archeological Findings	Risk of a cultural site find during construction	2	8	8	8	8	8	8	8
	SO-10	Impact to local First Nations	Have First Nations communities who aboriginal interests may be affected been consulted?	2	6	6	6	6	6	6	6
	SO-11	Cultural and Heritage impacts	Impacts to any physical and cultural heritage value	2	6	6	6	6	6	6	6
			Social Subtotal: 105 Po	ints Maximum	75	75	65	69	69	60	65
			Environmental + Social Subtotal: 235 Point	s Maximum	196	183	147	162	162	108	136

Capital Regional District - Core Area Wastewater Treatment Program Assessment of Biosolids Treatment and Integrated Resource Management Options

Table 6.2 - Triple Bottom Line Assessment Framework (Unweighted)

				Criteria Option Results								
Criteria	No.	Criteria Categories	Measure Description	Weight	1	2	3	4	4a	5	6	
			Biosolids Treatment Technology		Anaerobic Digestion + Dryer + Gas Scrubbing and Nutrient Recovery	Anaerobic Digestion + Dryer No Gas Scrubbing or Nutrient Recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids	
	EC-01	Capital Costs	Construction costs including both direct and indirect costs in 2016 dollars		\$267 M	\$224 M	\$188 M	\$166	\$144	\$104 M	\$224 M	
omic	EC-02	Whole Life Cycle Costs	Capital, operating and maintenance costs		\$314 M	\$287 M	\$257 M	\$206 M	\$185 M	\$159 M	\$275 M	
Econ	EC-05	Schedule of Completion	Options which extend over a longer period and cause schedule impact costs		31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2020	31-Dec-2022	
				Economic								
	EN-01	Carbon Footprint / GHG	Tons of eCO ₂ created	Very Important	5	4	3	4	4	1	2	
	EN-02	Meets or Exceed Regulatory Requirements	Treatment Process Meets Regulatory Requirements	Very Important	5	4	4	4	4	1	3	
	EN-03	Redundancy	Does Option meet the Reliability criteria specified in the Municipal Wastewater Regulations	Very Important	4	4	4	4	4	2	3	
	EN-04	Resource Recovery Beneficial Reuse	Do recovered resources have flexibility for beneficial reuse	Important	5	4	3	4	4	2	3	
	EN-05	Future Potential for Integrated Resource Management with MSW	Suitability of the solids treatment process to integrate with Integrated Resource Management (IRM) system	Very Important	5	4	3	3	3	2	2	
menta	EN-06	Permitting Requirements	Complexity of permitting and approvals processes	Important	5	5	3	4	4	2	2	
viron	EN-07	Energy recovery	Does the process recover reusable energy - biogas/methane/syngas or heat	Important	5	4	2	3	3	2	2	
ш	EN-08	Leachate/Wastewater Production	Degree that the Option produces leachate or wastewater which must be treated	Somewhat Important	3	3	3	2	2	2	3	
	EN-09	Environmental Controls (Air)	Does process require advanced air emission controls	Important	4	4	2	3	3	2	2	
	EN-10	Track Record of Performance	Does process have a proven track record of performance as specified in the draft P3 Canada agreement	Very Important	5	5	3	4	4	2	4	
	EN-11	Terrestrial Impacts	Impact that a given site would have on existing terrestrial habitat	Important	4	4	4	3	3	3	4	
			Environmental Subtotal:	55 Points Maximum								
	SO-01	Operations Traffic	Amount of traffic nuisance caused to neighbouring residents post construction	Somewhat Important	4	4	3	2	2	1	5	
	SO-02	Operations Impact on Local Community	Noise, dust and vibration inconvenience	Important	4	4	4	4	4	4	4	
	SO-03	Odour Impact on Local Community	Potential odour impact on nearby residential/commercial properties	Very Important	4	4	2	3	3	2	2	
	SO-04	Health and Safety - Workplace and Public	Potential workplace and public health and safety issues	Very Important	4	4	3	3	3	2	3	
	SO-05	Construction Impacts (Solids Conveyance)	Disruption to community during construction phase	Somewhat Important	3	3	3	3	3	3	3	
cial	SO-06	Construction Impacts (Treatment)	Disruption to community during construction phase	Important	4	4	4	4	4	4	4	
So	SO-07	Ease of Operations	Complexity of technology to maintain operational performance	Important	3	3	3	4	4	3	4	
	SO-08	Compatibility with Official Community Plan	Degree of planning activity to amend OCP, zoning and Development Permitting	Important	3	3	3	3	3	3	1	
	SO-09	Archeological Findings	Risk of a cultural site find during construction	Important	4	4	4	4	4	4	4	
	SO-10	Impact to local First Nations	interests may be affected been consulted?	Important	3	3	3	3	3	3	3	
	SO-11	Cultural and Heritage impacts	Impacts to any physical and cultural heritage value	Important	3	3	3	3	3	3	3	
			Social Subtotal:	55 Points Maximum								
			Environmental + Social Subtotal: 110 F	oints Maximum	89	84	69	74	74	53	66	

Capital Regional District - Core Area Wastewater Treatment Program Assessment of Biosolids Treatment and Integrated Resource Management Options

Appendix A

Triple Bottom Line Considerations

Screening Summary Sheet

Rating System Proposed:

Very Goo	od (5)	Good (4)		Average (3)		Fair (2)	P	oor (1)
The impact of the option i and far exceeds minimum	is very favourable The n expectations. clea	impact of the option is fave arly exceeds minimum expe	ourable and The impart ectations. meets or expectati	act of the option is acceptab somewhat exceeds minimi ons.	ble and The impact of function The impact of function The impact of function of the temperature of temp	the option barely meets ctations.	Option fails to meet criterion.	basic requirements of the
Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas Scrubbing and Nutrient Recovery	Anaerobic Digestion + Dryer No Gas Scrubbing or Nutrient Recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
Economic Criteria								
EC-01 Capital Costs Construction costs including both direct and indirect costs in 2016 dollars.	Total Capital Cost of option	Capital Cost of Option: \$ 267 million	Capital Cost of Option: \$ 224 million	Capital Cost of Option: \$ 188 million	Capital Cost of Option: \$ 166 million	Capital Cost of Option: \$ 144 million	Capital Cost of Option: \$ 104 million	Capital Cost of Option: \$ 224 million
EC-02 Whole Life Cycle Costs Operating and maintenance costs, expressed as a net present value cost using a 25 year life cycle cost and a 4% discount rate, added to capital costs.	Whole Life Cycle Cost of Option	Whole Life Cycle Cost of Option: \$ 314 million	Whole Life Cycle Cost of Option: \$ 287 million	Whole Life Cycle Cost of Option: \$ 257 million	Whole Life Cycle Cost of Option: \$ 207 million	Whole Life Cycle Cost of Option: \$ 185 million	Whole Life Cycle Cost of Option: \$ 159 million	Whole Life Cycle Cost of Option: \$ 275 million
EC-03 Schedule of Completion	Estimated Service Commencement Date Impacts included in the schedule assumption: • Timing needed for zoning and permitting requirements (e.g., development permit) • Environmental permitting requirements • Construction complexity • Commissioning	Evidence: Estimated Service Commencement Date: December 31st, 2020 Final Acceptance: December 31, 2020	Evidence: Estimated Service Commencement Date: December 31st, 2020 Final Acceptance: December 31, 2020	Evidence: Estimated Service Commencement Date: December 31st, 2020 Final Acceptance: December 31, 2020	Evidence: Estimated Service Commencement Date: December 31st, 2020 Final Acceptance: December 31, 2020	Evidence: Estimated Service Commencement Date: December 31st, 2020 Final Acceptance: December 31, 2020	Evidence: Estimated Service Commencement Date: December 31st, 2020 Final Acceptance: December 31, 2020	Evidence: Estimated Service Commencement Date: December 31st, 2022 extended due to additional time required for regulatory permitting Final Acceptance: December 31, 2022

Poor (1)
Option fails to meet basic requirements of th

Option Number	1	2	3	4	4a	5	6
Option Description	Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
Environmental Criteria							
 EN-01 Carbon Footprint Net carbon dioxide equivalent (eCO₂) during he construction and operation of the facility tonnes/year). Pumping and other conveyance impacts to carbon footprint 	 Evidence: Estimated carbon footprint for construction (one time) 9,760 tonnes Power (treatment only) 913 tonnes/year Fugitive gas emission 267 tonnes/year Residual trucking fuel carbon 90 tonnes/year Carbon offsets: Gas collection, utilization and sale offset 6,199 tonnes/year Struvite production offsets 189 tonnes/year Annual Operating Net carbon credit: (5,118) tonnes/year 	 Evidence: This option produces gas which can be used for digester heating, hot water system, boilers and could be connected to landfill gas system at Hartland for power generation. No gas sale for revenue. Estimated carbon footprint for construction (one time) 9,242 tonnes Power (treatment only) 696 tonnes/year Fugitive gas emission 267 tonnes/year Residual trucking fuel carbon offsets: Gas collection, utilization and sale offset 6,199 tonnes/year Annual Operating Net carbon credit: (5,147) tonnes/year 	 Evidence: This option requires external landfill gas for drying but will produce a dry product which has fuel value. Estimated carbon footprint for construction (one time) 6,878 tonnes Power (treatment only) 547 tonnes/year Residual trucking fuel carbon 177 tonnes/year Net carbon credit: 723 tonnes/year Conclusion: Average 	 Evidence: This option produces gas which can be used for digester heating, hot water system, boilers and could be connected to landfill gas system at Hartland for power generation. Estimated carbon footprint for construction (one time) 7,741 tonnes Power (treatment only) 598 tonnes/year Fugitive gas emission 832 tonnes/year Residual trucking fuel carbon 7 tonnes/year for onsite Biocell. Carbon offsets: Gas collection, utilization and sale offset 6,199 tonnes/year Annual Operating Net carbon credit: (4,762) tonnes/year 	 Evidence: This option produces gas which can be used for digester heating, hot water system, boilers and could be connected to landfill gas system at Hartland for power generation. Estimated carbon footprint for construction (one time) 7,086 tonnes Power (treatment only) 598 tonnes/year Fugitive gas emission 832 tonnes/year Residual trucking fuel carbon 7 tonnes/year for onsite Biocell. Carbon offsets: Gas collection, utilization and sale offset 6,199 tonnes/year Annual Operating Net carbon credit: (4,762) tonnes/year 	 Evidence: Carbon footprint is amongst highest as there is no significant gas or energy production and emissions from raw sludge are higher. Estimated carbon footprint for construction (one time) 4,876 tonnes Power (treatment only) 420 tonnes/year Fugitive gas emission 2,154 tonnes/year Residual trucking fuel carbon 12 tonnes/year for onsite Biocell. Annual Operating Net carbon credit: 2,586 tonnes/year 	 Evidence: This option has the ability to generate minor amounts of electrical power from raw solids alone. Estimated carbon footprint for construction (one time) 7,560 tonnes Power (treatment only) 852 tonnes/year Residual trucking fuel carbon 12 tonnes/year Annual Operating Net carbon: 864 tonnes/year Conclusion: Average

Option Number	1	2	3	4	4a	5	6
Option Description	Anaerobic Digest Dryer + Gas scrubbing a nutrient recove	on + Anaerobic Digestion + Dryer nd No gas scrubbing or y nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
EN-02 Exceeds Regulatory Requirements • Degree to w treatment p exceeds cu regulatory requiremen	 thich the rocess This Option will produce Class A biosolids which is suitable for a ran beneficial reuse options. The Option will produce pipeline quality methane can be sold to displace fossil fu This Option will produce pipeline suitable as agric fertilizer. Conclusion: Very Good 	 Evidence: This Option will produce Class A biosolids which is suitable for a range of beneficial reuse options. This option will produce pellets suitable for use as a fuel substitute. Which els. Conclusion: Good 	 Evidence: This Option will produce Class A biosolids which is suitable for a range of beneficial reuse options including fuel substitute and/ or soil amendment. Conclusion: Good 	 Evidence: This Option will produce Class A biosolids which is suitable for a range of beneficial reuse options. It is also stabilized and can be used for landfill cover or stored in a biocell. The option produces biogas which is suitable for internal use for digestion process The biocell is likely only a temporary measure if approved by Ministry of Environment 	 Evidence: This Option will produce Class A biosolids which is suitable for a range of beneficial reuse options. It is also stabilized and can be used for landfill cover or stored in a biocell. The option produces biogas which is suitable for internal use for digestion process The biocell is likely only a temporary measure if approved by Ministry of Environment 	 Evidence: This option produces un-stabilized biosolids with very limited disposal options and is likely only a temporary measure if approved by Ministry of Environment. Conclusion: Poor 	 Evidence: This option thermally destructs raw solids and can produce energy. Conclusion: Average
Criteria and Consider Description	ations						
 EN-03 Redundancy Does Option meet the Reliability criteria specified in the Municipal Wastewater Regulations? Table 1 — Component Reliability Requirement Wastewater Regulations Table 1 — Component Reliability Requirement Wastewater Regulations The remain capacity with largest unit out of service at least 50% design max 	and tts for Facilities Municipal ng h the process ie must be o of the mum flow	Evidence: • Option has redundancy features that meet regulatory requirements. Option is reliant on third party for disposal of dried fuel. Conclusion: Good	 Evidence: Option has redundancy features that meet regulatory requirements. Option is reliant on third part for disposal of dried fuel. Conclusion: Good 	 Evidence: Option has redundancy features that meet regulatory requirements. Disposal to landfill under control of CRD Conclusion: Good 	 Evidence: Option has redundancy features that meet regulatory requirements. Disposal to landfill under control of CRD Conclusion: Good 	 Evidence: This is an interim solution. Thickening and dewatering can be designed with redundancy. Conclusion: Fair 	 Evidence: Facility can be designed with redundancy for critical components. Back up in the event of failure would be landfill. Conclusion: Average

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
EN-04 Resource Recovery Beneficial Reuse Do recovered resources have flexibility for beneficial reuse	 Type of resources that will be recovered by this Option (i.e. biosolids, phosphorous, energy) Quantities of resources that will be recovered by this Option 	 Evidence: This Option will produce 6,970 (wet) tonnes (wet) per year of Class A biosolids at 90% solids as feedstock for the IRM process train This Option can utilized surplus landfill gas for plant heating This Option will produce 272 tonnes of food grade phosphorous which is suitable as agricultural fertilizer. Potential revenue is estimated at ~\$50,000/year The cleaned biogas and landfill gas can be sold as a fuel for use in vehicles and to heat buildings. 	 Evidence: This Option will produce 6,970 (wet) tonnes per year of Class A biosolids at 90% solids as feedstock for the IRM process train This Option can create electricity from surplus landfill gas and biogas for the BC Hydro grid, Conclusion: Good 	 Evidence: This Option will produce 12,090 (wet) tonnes per year of dried pellets (Class A biosolids) at 90% solids as feedstock for the IRM process train Conclusion: Average 	 Evidence: This Option will produce 25,090 (wet) tonnes per year of Class A biosolids at 25% solids as feedstock for the IRM process train This Option can create electricity from surplus landfill gas and biogas for the BC Hydro grid, Conclusion: Good 	 Evidence: This Option will produce 25,090 (wet) tonnes per year of Class A biosolids at 25% solids as feedstock for the IRM process train This Option can create electricity from surplus landfill gas and biogas for the BC Hydro grid. Conclusion: Good 	 Evidence: This option produces un-stabilized biosolids and is likely only a temporary measure if approved by Ministry of Environment. There will be gas recovered as landfill gas but the quantity of recovery is not possible to estimate. This Option will yield 43,520 (wet) tonnes/year @ 25% of un-stabilize biosolids as feedstock for the IRM process train Conclusion: Fair 	 Evidence: This option will recover heat from the thermal process but the quantity/quality of heat will depend on the technology selected. Conclusion: Average
EN-05 Flexibility for Integrated Resource Management with Municipal Solid Waste Suitability of the solids treatment process to integrate with Integrated Resource Management (IRM) system	 The potential for Integrated Resource Management via the Biosolids Management Strategy The ability of the option to accommodate an IRM planning process either now or in the future (e.g., future retrofits to accommodate different uses for waste products). 	 Evidence: This option produces a dried Class A biosolids which can be used for a range of beneficial uses including fuel and other products. Option includes gas and nutrient recovery. Conclusion: Very Good 	 Evidence: This option produces a dried Class A biosolids which can be used for a range of beneficial uses including fuel and other products. Gas recovery only for internal use. No nutrient recovery Conclusion: Good 	 Evidence: This option produces a dried Class A biosolids which can be used for a range of beneficial uses including fuel and other products. External gas source required to run drier. Conclusion: Average 	 Evidence: This option produces a dewatered Class A biosolids which can be used for a range of beneficial uses including landfill cover or a biocell. Conclusion: Average 	 Evidence: This option produces a dewatered Class A biosolids which can be used for a range of beneficial uses including landfill cover or a biocell. Conclusion: Average 	 Evidence: This option produces dewatered raw sludge which can only be stored in biocell likely an interim basis. Conclusion: Fair 	 Evidence: This option produces ash which can be disposed of in landfill. Conclusion: Fair

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
EN-06 Permitting Requirements Complexity of permitting and approvals processes.	 Does this Option comply with the approved Liquid Waste Management Plan (LWMP)? Does this Option require an amendment to the approved Solid Waste Management Plan (SWMP)? Environment Impact Study (EIS) required? Does this option comply with Federal/Provincial regulatory requirements? Air Emissions Permit required? Anticipated public support/opposition to technology. 	 Evidence: This Option is consistent with the LWMP Amendment #10 This Option does not require an amendment to the SWMP EIS has been completed for this Option This Option will meet all Federal/Provincial regulations Conclusion: Very Good 	 Evidence: This Option is consistent with the LWMP Amendment #10 This Option does not require an amendment to the SWMP EIS has been completed for this Option This Option will meet all Federal/Provincial regulations Conclusion: Very Good 	 th exice: This Option is consistent with the LWMP Amendment #10 This Option does not require an amendment to the SWMP This option will meet all Federal/Provincial regulations There are no raw biosolids dryers in BC so permitting may be more extensive. Conclusion: Average 	 Evidence: This Option is consistent with the digestion component of the LWMP Amendment #10 This Option does not require an amendment to the SWMP This Option will meet all Federal/Provincial regulations Additional permitting will be required for biocell. 	 Evidence: This Option is consistent with the digestion component LWMP Amendment #10 This Option does not require an amendment to the SWMP This Option will meet all Federal/Provincial regulations Additional permitting will be required for biocell. Conclusion: Good 	 Evidence: This Option will require a LWMP amendment. This Option does not meet all Federal/Provincial regulations Option is only an interim measure and will require conditional approval from Ministry of Environment. 	 Evidence: This Option will require a LWMP amendment. Intensive permitting process is required for thermal destruction projects including EIS and air shed modeling. This technology could face public opposition.
EN-07 Energy recovery Does the process recover reusable energy – biogas / methane / syngas or heat?	 Evidence: Energy balance Gross energy recovery (biogas/heat) Process energy consumption Surplus biogas sale for revenue 	 Evidence: Energy recovered from digester gas, Digester gas for digestion heating, biosolids drying, boilers, plant wide and individual hot water systems Surplus biogas for upgrade and sale to natural gas system for revenue. Dried biosolids could potentially be used as fuel. Conclusion: Very Good 	 Evidence: Energy recovered from digester gas, Digester gas for digestion heating, biosolids drying, boilers, plant wide and individual hot water systems No biogas upgrade, thus no surplus biogas sale for revenue. Dried biosolids could potentially be used as fuel. 	 Evidence: No digestion process, thus no energy recovered from digester gas, Significant heat demand from solids drying, thus landfill gas and natural gas will be required. No biogas upgrade, thus no surplus biogas sale for revenue. Dried biosolids could potentially be used as fuel. Conclusion: Fair 	 Evidence: Energy recovered from digester gas, Digester gas for digestion heating, boilers, plant wide and individual hot water systems No biogas upgrade, thus no surplus biogas sale for revenue. No dried biosolids Surplus biogas can be used for co-generation 	 Evidence: Energy recovered from digester gas, Digester gas for digestion heating, boilers, plant wide and individual hot water systems No biogas upgrade, thus no surplus biogas sale for revenue. Surplus gas can be used for co-generation No dried biosolids 	 Evidence: No digestion process, thus no energy recovered from digester gas, Landfill gas and natural gas will be required for plant operation and head demand. No biogas upgrade, thus no surplus biogas sale for revenue. No dried biosolids Conclusion: Fair 	 Evidence: Sludge being used as fuel to generate stream and thus electricity through turbine generator. Residual heat being recovered to reduce the gas temperature for cleaning and discharging. Sludge alone is not likely to sustain incineration operation. Combined MSW is likely required. Conclusion: Fair

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
EN-08 Leachate/Wastewater Production Degree that the Option produces leachate or wastewater which must be treated.	 Quantity and quality of leachate generated by this Option Quantity and quality of wastewater generated by this option. 	 Evidence: This Option could yield 3.7 ML/d of process wastewater/ day from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Average 	 Evidence: This Option could yield 3.7 ML/d of process wastewater/ day from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Average 	 Evidence: This Option could yield 3.7 ML/d of process wastewater/ from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Average 	 Evidence: This Option will produce additional landfill leachate. This Option could yield 3.7 ML/d of process wastewater/ from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Fair 	 Evidence: This Option will produce additional landfill leachate. This Option could yield 3.7 ML/d of process wastewater/ from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Fair 	 Evidence: This option will produce additional landfill leachate. This Option could yield 4.8 ML/d of process wastewater/ day from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Fair 	 Evidence: This Option could yield 4.8 ML of process wastewater/ day from solids dewatering. All liquid waste by- product streams will be conveyed to the liquid treatment wastewater plant(s) for treatment with landfill leachate. Conclusion: Average
EN-09 Environmental Controls (Air) Does process require advanced air emission or odour controls?	Complexity of environmental emissions control for the option under consideration	Evidence: This Option will require odour control for thickening and dewatering process. Conclusion: Good	Evidence: This Option will require odour control for thickening and dewatering process Conclusion: Good	 Evidence: This option will require odour and emissions control from raw sludge dryer. Conclusion: Fair 	 Evidence: This Option will require odour control for thickening and dewatering process. Conclusion: Average 	 Evidence: This Option will require odour control for thickening and dewatering process. Conclusion: Average 	 Evidence: Odour control from raw sludge biocell at this scale will be difficult to control. Conclusion: Fair 	 Evidence: This Option will process raw solids and will require additional odour control for thickening and dewatering process. This Option will require advanced air emissions controls.
EN-10 Track Record of Performance Does process have a proven track record of performance as specified in the draft P3 Canada agreement?	Does the Option meet the P3 Canada requirement of 5 years of continuous operation under similar operating conditions?	Evidence: Yes, many similar installations Conclusion: Very Good	 Evidence: Yes, many similar installations Conclusion: Very Good 	 Evidence: Yes, more limited number of installations Conclusion: Average 	 Evidence: Yes for digestion, limited number of biocells. Many cases where digested solids landfilled. Conclusion: Good 	 Evidence: Yes for digestion, limited number of biocells. Many cases where digested solids landfilled. Conclusion: Good 	 Evidence: CRD is currently landfilling raw solids from Saanich Peninsula and Sooke plant on an interim basis. Conclusion: Fair 	 Evidence: There are a number of municipalities across North America which use thermal destruction. Conclusion: Good

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
EN-11 Terrestrial Impacts Impact that a given site would have on existing terrestrial habitat.	 Impact on the vegetation and habitat for terrestrial areas of the site during construction Degree of mitigation required for terrestrial environment. 	 Evidence: No material difference in how the options meet the criterion. Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: Biocells occupy a significant footprint Conclusion: Average 	 Evidence: Biocells occupy a significant footprint Conclusion: Average 	 Evidence: Biocell occupy a significant footprint, raw solids will require additional area. Conclusion: Fair 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good
Social Criteria (Including Health and Safety)	Considerations							
SO-01 Operations Traffic The impact of the traffic during the operations period of the option has on local communities.	 Number of trucks per month Classification of local community, e.g., residential, industrial, or commercial properties Number, and types, of schools along the access route Types of roads; for example, residential, arterial 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for biosolids disposal is estimated to be 30 trucks/month Conclusion: Good 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for biosolids disposal is estimated to be 30 trucks/month Conclusion: Good 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for biosolids disposal is estimated to be 65 trucks/month Conclusion: Average 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for biosolids disposal is estimated to be 155 trucks/month Conclusion: Fair 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for biosolids disposal is estimated to be 155 trucks/month Conclusion: Fair 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for biosolids disposal is estimated to be 282 trucks/month Conclusion: Poor 	 Evidence: Daily traffic for staff access estimated at 8 to 10 vehicle movements per day Access road to the site is a rural residential road. Anticipate delivery of bulk chemicals up to twice per month Monthly truck traffic for ash disposal is estimated to be 3 trucks/month Conclusion: Very Good
SO-02 Operations Impacts on local community Potential for operational noise, dust and vibration impacts on the local community during operation of the treatment facility.	 Impact of noise, dust and vibration on local community Classification of local community (e.g., residential or industrial) Distance of neatest neighbour to source of noise and vibration (e.g., 25 m) 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good 	 Evidence: All mechanical equipment designed to minimize vibration and noise All mechanical equipment contained inside buildings Plant designed for limited vibration and noise levels. Hartland site is remote from community Conclusion: Good

Option Number	1	2	3	4	4a	5	6
Option Description	Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
Criteria and Description Considerations							
 SO-03 Odour Impacts on Local Community Impact of nuisance odours on the local community. This criterion assumes that the following design parameters have been followed: Covered processes Machines in buildings Use of scrubbers Requirement for no odour at the property line during normal operations Proximity to local community (e.g., 25m) and classification of local community (e.g., commercial, industrial, residential) Potential odour due to fugitive emission Degree of omission containment Degree of odour control equipment Dispersion specs and impact nearest residences 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions. Conclusion: Good 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions. Conclusion: Good 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions. Conclusion: Fair 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions. Conclusion: Average 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions. Conclusion: Average 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions. Conclusion: Fair 	 Evidence: Nearest residential property is 1,000 metres from the site. All unit processes contained in buildings. Plant designed to stringent odour control requirements. Odour control systems include biofilters and activated carbon filters. Emission modeling has ensured low odour numbers at property boundaries. Due to the distance between the facilities and nearby residences, there is a low probability of complaints relating to fugitive odour emissions.
CO 04	Fridance	F uidenees	F uideneeu	F uidemann	F uidemann	Fridanaa	Conclusion: Fair
 Sewage and untreated biosolids may contain bacteria, fungi, parasites, and viruses that can cause various illnesses and infections Biological agents that are capable of causing disease and that are considered the greatest threat are called pathogens. 	 There is no potential of landfill operations staff or the community being exposed to wind or water borne pathogens from this Option. The biosolids processing equipment is generally enclosed and there is minimal potential to 	 There is no potential of landfill operations staff or the community being exposed to wind or water borne pathogens from this Option. The biosolids processing equipment is generally enclosed and there is minimal potential to 	 There is some potential of landfill operations staff or the community being exposed to wind or water borne pathogens from this Option. The raw solids processing is not enclosed and there is greater potential to 	 There is some potential of landfill operations staff or the community being exposed to wind or water borne pathogens from this Option. Biosolids have been stabilized via digestion process The biosolids 	 There is some potential of landfill operations staff or the community being exposed to wind or water borne pathogens from this Option. Biosolids have been stabilized via digestion process The biosolids 	 There is greater potential of landfill operations staff or the community being exposed to wind or water borne pathogens from this Option. The raw solids have not been stabilized The raw solids processing is not 	 There is some potential community being exposed to harmful emissions. The raw solids processing equipment is generally enclosed and there is minimal potential to wastewater operators to be exposed to airborne pathogens.

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
	 dispersed into the workplace and surrounding community by water or wind. Potential health risks and illnesses may include, but are not limited to: Gastroenteritis - characterized by cramping, stomach pains, diarrhea and vomiting Weil's disease - a flulike illness with persistent and severe headache, transmitted by rat urine. Damage to liver, kidneys and blood may occur and the condition can be fatal. Occupational asthma - resulting in attacks of breathlessness, chest tightness and wheezing, and produced by the inhalation of living or dead organisms. Infection of the skin or eyes Rarely, allergic alveolitis (inflammation of the lung) with fever, breathlessness, dry cough, and aching muscles and joints. 	to be exposed to airborne pathogens. • For periodic activities that require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Good	to be exposed to airborne pathogens. • For periodic activities that require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Good	to be exposed to airborne pathogens • For activities that require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Average	enclosed and there is greater potential to wastewater operators to be exposed to airborne pathogens • For periodic activities that require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Average	enclosed and there is greater potential to wastewater operators to be exposed to airborne pathogens • For periodic activities that require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Average	is greater potential to wastewater operators to be exposed to airborne pathogens. • For activities that require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Fair	require workers to contact contaminated equipment, workers will be trained in Safe Work Practices and will use Personal Protective Equipment (PPE) such as gloves and masks to avoid any direct contact with untreated waste. Conclusion: Average
SO-05 Construction Impacts (Solids Conveyance) Construction impacts to the community along the conveyance route	Consider the impacts (noise, dust and vibration) of conveyance construction to the local community (focusing on	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
SO-06 Construction Impacts (Treatment Facilities) Construction impacts to the community	 residential and commercial) Interruption of "quiet enjoyment" of private property owners Impacts to vegetation and property, including any costs of remediation Possible damage to property(consider causes, e.g., blasting or vibration) Pipeline is small diameter 250 mm and impacts are not anticipated to be significant Consider the impacts (noise, dust and vibration) of plant construction to the local community (focusing on residential and commercial) Impacts to environmentally sensitive areas Interruption of "quiet enjoyment" of private property owners Impacts to vegetation and property, including any costs of remediation Possible damage to property (consider causes, e.g., blasting or vibration) Daily construction 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 24 months. Conclusion: Good 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 24 months. Conclusion: Good 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 18 months. Conclusion: Good 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 18 months. Conclusion: Good 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 18 months. Conclusion: Good 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 12 months. Conclusion: Good 	 Evidence: Excavated material will be disposed on site. Due to the remoteness of the facilities there is a low risk of significant dust, vibration, and noise impacts to the neighbours. Daily traffic volumes from construction activities could be 100 vehicles movements/day for 36 months. Concrete trucking to site will be up to 30 trucks/day over 30 months. Conclusion: Good
	truck traffic							

Option Description Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery Anaerobic Digestion + Dryer + Gas scrubbing an nutrient recovery Anaerobic Digestion / No gas scrubbing an nutrient recovery Anaerobic Digestion is a stable process that will perform well withou operator oversight during periods of unattended operation Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Undigested solids dewatering requires additional equipment using centrifuge Anaerobic Digestion is a stable process that will perform well withou operator oversight during periods of unattended operation Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Undigested solids dewatering requires additional equipment withou operator oversight during periods of unattended operation Evidence: Evidence: <t< th=""><th>Description</th></t<>	Description
SO-07Esse of Operations Complexity of technology to maintain operational performanceEvidence:Evidence	
Intervention Technology use ngn speed rotating elements and are normally only utilized when operators are onsite. Technology use ngn speed rotating elements and are normally only utilized when operators are onsite. Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trickening utilizes polymers which require frequent monitoring and adjustment based on biosolids Solids dewatering or trick	 Is the treatment technology robust and will respond favourably to changing feedstock conditions Does the treatment technology require frequent operator monitoring and intervention
SO-08 • Compatibility with evidence: Evidence: Evidence: Evidence: Evidence: Evidence: Evidence: • So-08 • Compatibility with evisting Official • Output official </td <td>Compatibility with existing Official</td>	Compatibility with existing Official
Compatibility with Official Community Plan • Solids processing is a permitted use.	Community Plan Community Plan
Degree of planning activity to amend OCP, zoning• Requirement for rezoning or variance• Rezoning not required for this Option.• Price for this Option.• P	of planning activity • Requirement for rezoning or variance
and Development Permittingon zoning, including risk of receiving• OCP has been amended for the• OCP	relopment on zoning, including ng risk of receiving

PAGE 10 of 12

Option Number		1	2	3	4	4a	5	6
Option Description		Anaerobic Digestion + Dryer + Gas scrubbing and nutrient recovery	Anaerobic Digestion + Dryer No gas scrubbing or nutrient recovery	Dryer Residual Solids	Anaerobic Digestion / Dewatered Solids / Biocell	Anaerobic Digestion / Dewatered Solids / Biocell	Dewatered Residual Solids / Biocell	Thermal Destruction Residual Solids
	 variance in a timely manner Development permitting process, including risk of achieving DP in a timely manner Anticipated opposition to rezoning by host municipality or impacted property owners 	approved zoning. Development Permit (DP) may be required. Conclusion: Average	approved zoning. Development Permit (DP) may be required. Conclusion: Average	approved zoning. Development Permit (DP) may be required. Conclusion: Average	approved zoning. Development Permit (DP) may be required. Conclusion: Average	approved zoning. Development Permit (DP) may be required. Conclusion: Average	approved zoning. Development Permit (DP) may be required. Conclusion: Average	public consultation Conclusion: Poor
SO-09 Archeological Findings Risk of discovering archeological items during construction	 Consider archeological studies completed to date 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good 	 Evidence: No material difference in how the options meet the criterion Conclusion: Good
SO-10 Impact to Local First Nations How the option impacts local First Nations, either by providing benefits, or lack of consultation	 Can the option accommodate First Nation interests? Has the local First Nations been consulted on the proposed sites? Are there opportunities for the local First Nations to benefit through the development of the option? 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average
SO-11 Cultural and Heritage Impacts Ability to use and/or respect culture and heritage. This would include consideration of existing structures or features on the proposed sites.	How the option respects and incorporates existing cultural or heritage structures, site, or artifacts	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average 	 Evidence: No material difference in how the options meet the criterion Conclusion: Average

Appendix B

Site Drawings of Options

SEAL

No.

REVISION

DATE

BY

					Capital Regio	nal District	Core Ar Treatm	rea V ent F
 					DESIGNED	R.A.F	SURVEY	ΈD
					DRAWN	B.G	DATE	02
				Making a difference together	SCALE HORIZONTAL	1:500	СНЕСКЕ	ED
ENG.	No.	DATE	ISSUE	Making a onrerencetogether	SCALE VERTICAL		APPROV	/ED

25m

SHT. No. OF

SEAL

DATE BY

					Capital Regional District	Core Are Treatmer
					DESIGNED R.A.F	SURVEYE
					DRAWN B.G	DATE
				Making a differencetogether	SCALE HORIZONTAL 1:500	CHECKED
ENG.	No.	DATE	ISSUE	indiang e an aranta gether	SCALE VERTICAL	APPROVE

THE 10 AS WARF NO KES C ANTE(

Ž

					Capital Regional District	Core Ar Treatme
					DESIGNED R.A.F	SURVEY
					DRAWN B.G	DATE
				Making a differencetogether	scale Horizontal 1:500	CHECKE
ENG.	No.	DATE	ISSUE	maning a smaranteintagether	SCALE VERTICAL	APPROV

ACCURA TO THEIR AS WARRANT NO MAKES ANTEC

DATE REVISION SEAL BY No.

					Capital Regional Dis	strict(Core Are Treatme
					DESIGNED R.A.F	!	SURVEYE
					DRAWN B.G.	C	DATE
				Making a difference together	SCALE HORIZONTAL 1:50	00	CHECKE
ENG.	No.	DATE	ISSUE	making a amerencetogether	SCALE VERTICAL	4	APPROVE

Ā THEIR 10 AS WARR NO MAKES ANTEC

				10 m E IN METRES	20 m	
ore Area Wastewater reatment Program URVEYED	CORE AR OPTION 4 (WITH OR	EA WASTEWATER - ANAEROBIC DIGE WITHOUT MSW)	TREATMEN STION / BIOC	T PROGR	₹AM CTORS	
PPROVED RAF	NUMBER	NUMBER			OF	

					Capital Regio	onal District	Core Are Treatmer
					DESIGNED	R.A.F.	SURVEYE
					DRAWN	B.G	DATE
				Making a difference together	SCALE HORIZONTAL	1: 500	CHECKED
ENG.	No.	DATE	ISSUE	making a amerencetogether	SCALE VERTICAL		APPROVE

Ā THEIR 10 AS WARRAN⁻ NO MAKES ANTEC

			Ň			
	國際地					
Harring and the	have t	3 to the				
	$\sim $					
			0	10 m		20 m
			SCALE	IN MET	TRES	
Core Area Wastewater						
Freatment Program SURVEYED	OPTION	5 - UNDIGESTED RESI	UAL SOLIDS		ELL F	
CHECKED RAF	CONTRACT	DRAWING				'' <i>')</i> SHT. No.
	NUMBER	NUMBER				OF

										Capital Regi	ional District	.
										DESIGNED	R.A.F.	Τ
										DRAWN	СТ	
									Making a differencetogether	SCALE HORIZONTAL	1:500	
SEAL	ВҮ	DATE	No.	REVISION	ENG.	No.	DATE	ISSUE		SCALE VERTICAL		

Q	10	m	20
S	CALE IN	MET	RES

Core Area Wastewater

Treatment Program

SURVEYED

LIDAR

OPTION

6

RESIDUAL

SOLIDS

THERMAL

DATE

02/08/16

PLANT

SURVEYED

PLANT

GENERAL

SITE

PLANT

GENERAL

SITE

NUMBER

OR

SURVEYED

SURVEYED

LIDAR

OPTION

6

RESIDUAL

SOLIDS

THERMAL

DERAWING

OF

Appendix C Schedules

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 4 - Rock Bay Secondary. Biosolids at Hartland

ID	Task Name		Du	iration		2017	2018	2019		2020	202
					Qtr 2 Qtr 3	Qtr 4 Qtr 1 Qtr 2	Qtr 3 Qtr 4 Qtr 1 Q	tr 2 Qtr 3 Qtr 4 Qtr 1	Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 (Qtr 3 Qtr 4 Qtr
1	Core Area Wastewater T	reatment Program - Opti	on 5B' 84.3	5 mons							
2	Funding in Place			0 mons		Dec 30 '16					
3	Secure Property/Zonir	ng /Lease	1	.3 mons			Jan 15	5 '18			
4	Environmental Impact	Study (EIS)	1	.6 mons			Jan 15	5 '18			
5	Rock Bay Liquid Plant		80.5	5 mons							
6	Planning			9 mons							
7	Scope/Indicative I	Design/PA		9 mons			Sep 8 '17				
8	Prepare RFQ			2 mons		Apr	21 '17				
9	Prepare RFP			7 mons			Sep 8 '17]			
10	Procurement		1	.8 mons							
11	RFQ			4 mons				•			
12	RFQ Submission	n		2 mons			M	ar 12 '18			
13	RFQ Evaluation	/Shorlist		2 mons				May 7 '18			
14	RFP		1	4 mons							
15	RFP Submission	۱		9 mons				Jan :	14 '19		
16	RFP Evaluation	and Preferred Proponent	;	3 mons					Apr 8 '19		
17	Financial Close			2 mons					Jun 3 '19		
18	Construction		5	1 mons							
19	Early Work/Desig	n		5 mons					Aug 26	'19	
20	Construction & Co	ommissioning	4	4 mons							
21	Wet Testing			1 mon							
22	Acceptance Testir	ng		4 mons							
23	Biosolids Hartland		57.7	'5 mons							
24	Approval of Busines	s Case		0 mons	•	Sep 15 '16					
25	Procurement Planni	ng	5.8	5 mons		Feb 27	'17				
26	Release RFQ to Mar	ket		6 mons			Aug 14 '17				
27	Approval of Shortlist	t		7 mons			Sep 11 '17				
28	Release RFP to Mark	ket		0 mons		▲ Apr	3 '17				
29	Proposal Preparation	n		6 mons			Sep 18 '17				
30	Technical RFP Subm	ission Due		3 mons			Nov 30 '1	.7			
31	Financial Submission	n Due		3 mons			Feb Feb	22 '18			
32	Preferred Proponen	t Announced		0 mons			Fel	b 22 '18			
33	Commercial / Finance	cial Close		2 mons			, in the second se	Apr 19 '18			
34	Design / Constructio	on of Facility		6 mons				Aug 9 '18			
35	Wet Testing		1.	.2 mons							Sep 3 '20
36	Functional Testing			1 mon							Nov
37	Acceptance Testing			3 mons							
		Task		Proje	ct Summary		Inactive Mile	stone 🔷	Manual S	ummary Rollu	р
		Split		Exter	nal Tasks		Inactive Sum	mary 🗸	Manual S	ummary	$\mathbf{\nabla}$
Date	: Tue 9/6/16	Milestone	•	Exter	nal Milestone		Manual Task	C	Start-only	4	C
		Summary		Inact	ive Task		Duration-onl	V	Finish-on	lv	3
							D	1		<u>,</u>	
1							гаре	1			

21	2022		2023	3	
	Otr 1 Otr 2	Otr 3 Otr 4	Otr 1	0 + r 2	Otr 3
			Qu		
				1	
				1	
			ľ	·	
				1	
			4 - 14	•	
			1/2	2	
		N	ov 14	'22	
				Mar 6 '	22
				Mar 6 '	23
,				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6	23
				Mar 6	23
				Mar 6	23
				Mar 6	23
				Mar 6	23
26 '20				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21 Deadline				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM OPTION 4 - Rock Bay Secondary. Biosolids at Hartland

	· · · · · · · · · · · · · · · · · · ·												
ID	Task Name	Duration		2017	2018			2019	2020	2021	2022	202	23
			Qtr 2 Qtr 3	Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 C	tr 2 C	tr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr	r 4 Qtr 1 Qtr 2 Qtr 3 Qtr	4 Qtr 1 Qtr 2 Qtr 3	Qtr 4 Qtr 1 Qtr	2 Qtr 3 Qtr 4 Qtr	1 Qtr 2 Qtr 3
38	Conveyance (Scope TBD)	48 mons	5]		
39	Arbutus Road Attenuation Tank (DBB)	19 mons	5					Jul 1 '19					
40	Clover Forcemain to Rock Bay	31 mons	5						Jun 1 '20				
41	Rock Bay to Clover Forcemain	31 mons	5						Jun 1 '20				
42	Clover Pump Station	28 mons	5						Apr 6 '20				
43	ECI/Trent Twining (DBB)	30 mons	5						Jul 27 '2	20			
44	Macaulay Forcemain to Rock Bay	31 mons	5						Sep	21 '20			
45	Currie Forcemain	34 mons	5							Mar 8 '21			
46	Currie Pump Station	25 mons	5					-		Nov 16 '20			
47	Macaulay Pump Station	41 mons	5			_				Mar 8 '21			
48	Clover Outfall Twin	24 mons	5								Sep 20 '21		

DeadlineProgress

₽

.

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 4a - Rock Bay Tertiary. Biosolids at Hartland

ID	Task Name			Duration		20)17	2	018		2019	2	2020	20:
					Qtr 2 Qtr 3	Qtr 4 Qt	tr 1 Qtr 2 Qti	r 3 Qtr 4 C	Qtr 1 Qtr 2 Qt	tr 3 Qtr 4	Qtr 1 Qtr 2	Qtr 3 Qtr 4 0	Qtr 1 Qtr 2	Qtr 3 Qtr 4 Qtr
1	Core Area Wastewater Tr	eatment Program - Opt	ion 5B' 84	4.35 mons										
2	Funding in Place			0 mons			Dec 30 '16							
3	Secure Property/Zonin	g /Lease		13 mons					Jan 15 '18					
4	Environmental Impact	Study (EIS)		16 mons					Jan 15 '18					
5	Rock Bay Liquid Plant		80	0.55 mons		-								
6	Planning			9 mons										
7	Scope/Indicative D	Design/PA		9 mons		آ م		Sep 8 '17	7					
8	Prepare RFQ			2 mons			Apr 21	'17						
9	Prepare RFP			7 mons		l		Sep 8 '1	*					
10	Procurement			18 mons				•						
11	RFQ			4 mons				•						
12	RFQ Submission	1		2 mons					Mar 12 '1 🖌	18				
13	RFQ Evaluation/	/Shorlist		2 mons					May	7 '18				
14	RFP			14 mons										
15	RFP Submission			9 mons							Jan 14 '19			
16	RFP Evaluation a	and Preferred Proponen	it	3 mons							Apr ٤	3 '19		
17	Financial Close			2 mons							L - L - L - L - L - L - L - L - L - L -	un 3 '19		
18	Construction			51 mons										
19	Early Work/Design	ı		5 mons								Aug 26 '1	.9	
20	Construction & Co	mmissioning		44 mons							*			
21	Wet Testing	Ū		1 mon										
22	Acceptance Testin	g		4 mons										
23	Biosolids Hartland	0	57	7.75 mons										
24	Approval of Business	Case		0 mons	•	Sep 15 '	16							
25	Procurement Plannir	Ig		5.85 mons			Feb 27 '17							·
26	Release RFQ to Mark	æt		6 mons		ſ	_	Aug 14 '17	,					
27	Approval of Shortlist			7 mons				Sep 11 ':	17					
28	Release RFP to Mark	et		0 mons			🔶 Apr 3 '1	.7						
29	Proposal Preparation)		6 mons				Sep 18 '	'17					
30	Technical RFP Submis	ssion Due		3 mons					ov 30 '17					
31	Financial Submission	Due		3 mons					Feb 22 '18					
32	Preferred Proponent	Announced		0 mons					Feb 22 '18	3				
33	Commercial / Financi	ial Close		2 mons					Apr 19	'18				
34	Design / Construction	n of Facility		6 mons					¥	Aug 9 '18				
35	Wet Testing	in of Fueincy		1 2 mons										Sep 3 '20
36	Functional Testing			1 mon										Nov
37	Accentance Testing			3 mons										
	Acceptance resting			5 110115										
		Task		Proie	ct Summarv				ve Milestone	\diamond		Manual Su	mmarv Roll	
		Split				_		Incoth		·		Manual C		
Date:	Tue 9/6/16	spiit		Exter	IIdi IdSKS			macth	ve summary				mindfy	
		Milestone	•	Exter	nal Milestone	e 🔶		Manu	al Task	Ľ.		Start-only		E
		Summary		Inacti	ve Task			Durati	ion-only			Finish-only		3
									Page 1					

21	2022		2023	3	
	Otr 1 Otr 2	Otr 3 Otr 4	Otr 1	0 + r 2	Otr 3
			Qu		
				1	
				1	
			ľ	·	
				1	
			4 - 14	•	
			1/2	2	
		N	ov 14	'22	
				Mar 6 '	22
				Mar 6 '	23
,				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6 '	23
				Mar 6	23
				Mar 6	23
				Mar 6	23
				Mar 6	23
				Mar 6	23
26 '20				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21				Mar 6	23
26 '20 Feb 18 '21 Deadline				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '	23
26 '20 Feb 18 '21 Deadline Progress				Mar 6	23

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 4a - Rock Bay Tertiary. Biosolids at Hartland

ID	Task Name	Duration	2017	2018	2019	2020	2021	2022	2023	}
			Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Q	Qtr 4 Qtr 1 Qtr 2 Qt	r 3 Qtr 4 Qtr 1 Qtr 2 Q	tr 3 Qtr 4 Qtr 1 Qtr 2 Qtr	3 Qtr 4 Qtr 1 Qtr 2 Qt	r 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3	Qtr 4 Qtr 1	Qtr 2 Qtr 3
38	Conveyance (Scope TBD)	48 mons								
39	Arbutus Road Attenuation Tank (DBB)	19 mons			J	ul 1 '19				
40	Clover Forcemain to Rock Bay	31 mons				Jun :	1 '20			
41	Rock Bay to Clover Forcemain	31 mons				Jun	1 '20			
42	Clover Pump Station	28 mons				Apr 6 '20)			
43	ECI/Trent Twining (DBB)	30 mons					lul 27 '20			
44	Macaulay Forcemain to Rock Bay	31 mons					Sep 21 '20			
45	Currie Forcemain	34 mons		The second secon			Mar 8 '21			
46	Currie Pump Station	25 mons			*		Nov 16 '20			
47	Macaulay Pump Station	41 mons					Mar 8 '21			
48	Clover Outfall Twin	24 mons						Sep 20 '21		

DeadlineProgress

₽

.

		CA	OPTION 8 - McLoughlin Point Secondary, Biosolids Treatment at Hartland	
ID	Task Name	Duration	2017 2018 2019	
			Qtr 2 Qtr 3 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2	Qt
1	Core Area Wastewater Treatment Program - Option 8	56.05 mons		
2	Funding in Place	0 days		
3	McLoughlin Point Zoning/Property Finalized	0.5 mons	j Jan 13 17	
4	Liquid Plant McLoughlin Point	52.2 mons		
5	Negotiation financial submission	2 mons	reb 24 1/	
6	Preparation for Financial Close (include Board approval)	3 mons	, May 19 17	
7	Construction & Commissioning	44 mons		
8	Wet Testing	1 mon	۱ <u> </u>	
9	Functional Testing	1 mon		
10	Acceptance Testing Liquid Treatment	2.2 mons	š	
11	Biosolids Facility Hartland	56 mons		
12	Approval of Business Case	0 mons	Sep 15 '16	
13	Procurement Planning	5.85 mons	Feb 24 '17	
14	Release RFQ to Market	6 mons	S Aug 11 '17	
15	Approval of Shortlist	7 mons	Sep 8 '17	
16	Release RFP to Market	0 mons	s Apr 3 '17	
17	Proposal Preparation	6 mons	Sep 18 '17	
18	Technical RFP Submission Due	3 mons	s Nov 30 '17	
19	Financial Submission Due	3 mons	5 Feb 22 '18	
20	Preferred Proponent Announced	0 mons	5 Feb 22 '18	
21	Commercial / Financial Close	2 mons	s Apr 19 '18	
22	Design / Construction of Facility	6 mons	s Aug 9 '18	
23	Wet Testing	1.2 mons	5	
24	Functional Testing	1 mon	1	
25	Acceptance Testing	3 mons	5	
26	Conveyance	42 mons		
27	Arbutus Road Attenuation Tank (DBB)	19 mons	S Aug 10 '18	
28	Clover Forcemain	31 mons		📕 Ju
29	Clover Pump Station	28 mons	s M	lay 17
30	ECI/Trent Twining (DBB)	30 mons	s	Jun 1
31	Macaulay Forcemain	31 mons	s han	
32	Currie Forcemain	34 mons	s	
33	Currie Pump Station	25 mons	5	
34	Macaulay Pump Station	41 mons	s l	

Summary

Inactive Task

Duration-only

٦

Finish-only

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 8a - McLoughlin Point Tertiary, Biosolids Treatment at Hartland

ID	Task Name	Duration		1		2017	1			2018	1	1		2019	1	
1	Care Area Wastewater Treatment Dregram Option 8	E6 OE mons	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr
	Core Area wastewater Treatment Program - Option 8	56.05 mons				Dec 30	'16									
2	Funding in Place	0 days			`	lan 13	10									
	Liquid Bloot MeLoughlin Deint	0.5 mons				Juli 13	1,									
5	Liquid Plant McLoughin Point	32.2 mons				Fe	b 24 '17									
6	Droparation for Einancial Cloce (include Board approval)	2 1110115					Ma	av 19 '17								
7	Construction & Commissioning	3 11011s						., 10 17								
2	Wet Testing	44 mon														
9	Eurotional Tecting	1 mon														
10	Accentance Testing Liquid Treatment	2.2 mons														
11	Biosolids Facility Hartland	52 25 mons														
12	Approval of Business Case	0 mons			Sep 15 '	16										
13	Procurement Planning	5 85 mons			•	Fe	eb 27 '17									
14	Release REO to Market	6 mons						Aug	: 14 ' 17							
15	Approval of Shortlist	7 mons							, 	7						
16	Release REP to Market	0 mons					Apr 3 '	17	•							
17	Proposal Preparation	6 mons					· · ·		Sep 18 '1	17						
18	Technical REP Submission Due	3 mons							- 	lov 30 '17	,					
19	Financial Submission Due	3 mons									b 22 '18					
20	Preferred Proponent Announced	0 mons								F	eb 22 '18					
21	Commercial / Financial Close	2 mons									📄 Apr 1	9 '18				
22	Design / Construction of Facility	6 mons										Aug	g 9 '18			
23	Wet Testing	1.2 mons														
24	Functional Testing	1 mon														
25	Acceptance Testing	3 mons														
26	Conveyance	42 mons														
27	Arbutus Road Attenuation Tank (DBB)	19 mons										Au	g 10 '18			
28	Clover Forcemain	31 mons														📄 Jul
29	Clover Pump Station	28 mons												•	M	ay 17 '
30	ECI/Trent Twining (DBB)	30 mons														Jun 14
31	Macaulay Forcemain	31 mons								-						
32	Currie Forcemain	34 mons														
33	Currie Pump Station	25 mons														
34	Macaulay Pump Station	41 mons														
	Task	Project	Summary	/			Inactiv	e Milesto	ne	\diamond		Manu	ial Summ	ary Rollu)	
Data	Split	Externa	l Tasks				Inactiv	e Summa	ry	\bigtriangledown		Manu	ual Summ	ary		
	Milestone	Externa	l Milesto	ne			Manua	l Task		C		Start-	only		Ľ	
	Summary	Inactive	Task				Duratio	on-only				Finish	n-only		ב	
								Page 1								

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 18 - Rock Bay / McLoughlin Secondary. Biosolids at Hartland

ID	Task Name			Duration	1	2	017	2018	201	9	2020)	202
					Qtr 2 Qtr 3	3 Qtr 4 C	tr 1 Qtr 2 Qt	r 3 Qtr 4 Qtr 1 Qt	r 2 Qtr 3 Qtr 4 Qtr	1 Qtr 2	Qtr 3 Qtr 4 Qtr 1	L Qtr 2 Q	tr 3 Qtr 4 Qtr
1	Core Area Wastewater T	reatment Program - Opt	tion 2B & 3B 8	4.35 mons		7	D 20.14.6						
2	Funding in Place			0 mons			Dec 30 '16		40				
3	Secure Property/Zonir	ng /Lease		13 mons				Jan 15	18				
4	Environmental Impact	: Study (EIS)		16 mons				Jan 15	'18				
5	Liquid Plants		8	0.55 mons		-							
6	Planning			9 mons									
7	Scope/Indicative	Design/PA		9 mons		`		Sep 8 '17					
8	Prepare RFQ			2 mons			Apr 21	<u>'17</u>					
9	Prepare RFP			7 mons				Sep 8 '17					
10	Procurement			18 mons				•					
11	RFQ			4 mons				•••••					
12	RFQ Submissio	n		2 mons				Ma 🐪	ar 12 '18				
13	RFQ Evaluation	/Shorlist		2 mons					May 7 '18				
14	RFP			14 mons				•					
15	RFP Submissior	1		9 mons					Jai	n 14 '19			
16	RFP Evaluation	and Preferred Proponen	nt	3 mons						Apr 🕯	8 '19		
17	Financial Close			2 mons							un 3 '19		
18	Construction			51 mons									
19	Farly Work/Desig	n		5 mons					<u>.</u>		Aug 26 '19		,
20	Construction & Co	ommissioning		44 mons									
21	Wet Testing			1 mon									
22	Δccentance Testir	ησ		1 mons									
23	Biosolids Hartland	15	5	7 75 mons									
23		s Case	J	0 mons		Sep 15	'16						•
25	Brocuromont Blanni	ng		E QE mons			Feb 27 '17						<u> </u>
25		lig kot		5.65 mone				Διισ 14 '17					
20	Approval of Shortlist	Kel ⊦		7 mone				Sen 11 '17					
27				7 1110115			Apr 3 '1	17					
20	Release RFP to Mark	(et		0 mons				Son 18 '17					
29	Proposal Preparatio	n · · · ·		6 mons				Nov 20 '17	7				
30		ission Due		3 mons				Fob 7	י <u></u>				
31	Financial Submission	n Due		3 mons				Feb	22 10				
32	Preferred Proponen	t Announced		0 mons					Apr 10 '19				
33	Commercial / Financ			2 mons					Apr 19 18				
34	Design / Constructio	on of Facility		6 mons					Aug 9 18				
35	Wet Testing			1.2 mons									Sep 3 20
36	Functional Testing			1 mon									Nov
37	Acceptance Testing			3 mons									
		Task		Proje	ct Summary			Inactive Miles	stone 🔶		Manual Summa	ary Rollup	[
		Split		Exter	nal Tasks			Inactive Summ	nary 🗸		Manual Summa	ary	
Date:	Tue 9/6/16	Milestone	♦	Exter	nal Milestor	ne 📢	>	Manual Task	C		Start-only		C
		Summary			ve Task			Duration-only	,	_	Finish-only		2
		<u> </u>						Page 1	1				

21	2022	202	3
1 Otr 2 Otr 3 Otr 4	Otr 1 Otr 2 Otr 3 Otr	1 + r 4 Otr	1 Otr 2 Otr 3
			-
		Oct 17 '2	2
			-
			1.55
			Mar 6 '23
			Mar 6 '23
•			Mar 6 '23
			Mar 6 '23
26 '20			Mar 6 '23
26 '20 Eab 18 '21			Mar 6 '23
26 '20 Feb 18 '21			Mar 6 '23
26 '20 Feb 18 '21			Mar 6 '23
26 '20 Feb 18 '21			Mar 6 '23
26 '20 Feb 18 '21 Deadline			Mar 6 '23
26 '20 Feb 18 '21 Deadline			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress			Mar 6 '23
CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 18 - Rock Bay / McLoughlin Secondary. Biosolids at Hartland

ID	Task Name	Duration	2017	2018	2019	2020	2021	2022	2023
		Q	tr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qt	r 4 Qtr 1 Qtr 2	Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3	3 Qtr 4 Qtr 1 Qtr 2 Qtr 3	Qtr 4 Qtr 1 Qtr 2 Qtr 3	Qtr 4 Qtr 1 Qtr 2 Qtr	3 Qtr 4 Qtr 1 Qtr 2 Qtr 3
38	Conveyance (Scope TBD)	48 mons]	
39	Arbutus Road Attenuation Tank (DBB)	19 mons			Jul	1 '19			
40	Clover Forcemain to Rock Bay	31 mons				Jun 1	20		
41	Rock Bay to Clover Forcemain	31 mons				Jun 1	20		
42	Clover Pump Station	28 mons				Apr 6 '20			
43	ECI/Trent Twining (DBB)	30 mons				Ju	27 '20		
44	Currie Forcemain	34 mons					Mar 8 '21		
45	Currie Pump Station	25 mons					Nov 16 '20		
46	Macaulay Pump Station	41 mons					Mar 8 '21		
47	Clover Outfall Twin (TBD)	24 mons						Sep 20 '21	

DeadlineProgress

₽

-

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 18a - Rock Bay / McLoughlin Tertiary. Biosolids at Hartland

ID	Task Name	Duration		2017	2018	2019	2020	202
1	Core Area Masteriator Treatment Dreaser Ortig	2D 9 2D 94 25 mone	Qtr 2 Qtr	3 Qtr 4 Qtr 1 Qtr 2 Q	<u>tr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3</u>	3 Qtr 4 Qtr 1 Qtr 2	Qtr 3 Qtr 4 Qtr 1 0	<u> Qtr 2 Qtr 3 Qtr 4 Qtr</u>
2	Core Area wastewater Treatment Program - Option	1 2B & 3B 84.35 mons		▲ Dec 30 '16				
2	Socure Droperty /Zening /Lease	0 111011S			lan 15 '18			
	Secure Property/Zoning / Lease	13 mons			lan 15 '18			
5	Liquid Plants	20 EE mons			541115 10	<u>.</u>		
6		00.55 mons						
7	Fighting Scope (Indicative Design /DA	9 mons			Sep 8 '17			
2	Broppro PEO	9 mons		Apr 21	1 '17			
٥ ۵	Droppro PED	2 mons			Sen 8 '17			
10	Progurament	7 mons						
11		18 mons						
12	REO Submission	2 mons			Mar 12 '18			
12	RFQ Subinission	2 1110115			May 7 '	18		
1/		2 mons				10		
14	RFP DED Submission	14 mons				lan 14 '19		
15	RFP Sublitission	9 mons				Apr	8 '19	
17	Einangial Close	3 mons			<u>.</u>		lun 3 '19	<u></u>
10	Construction	2 mons					,un 5 15	
10	Construction Early Work/Design	51 mons					Δυσ 26 '19	
20	Construction & Commissioning	3 mons						
20	Wet Testing	44 mon			<u>.</u>			<u></u>
21	Acceptance Testing	1 1101						
22	Riosolids Hartland	57 75 mons						
23		0 mons		Sep 15 '16				
25	Procurement Planning	5 85 mons		Feb 27 '17	7			
26	Pelease REO to Market	5.85 mons			Aug 14 '17			
27	Approval of Shortlist	7 mons			Sep 11 '17			
28	Release RED to Market	7 mons		Apr 3 '	17			
20	Proposal Proparation	6 mons			Sep 18 '17			
30		2 mons			Nov 30 '17			
31	Financial Submission Due	3 mons			Feb 22 '18			
32	Preferred Proponent Announced	0 mons			Feb 22 '18			
33	Commercial / Financial Close	2 mons			Apr 19 '1	8		
34	Design / Construction of Facility	2 mons				Aug 9 '18		
35	Wet Testing	1 2 mons						Sep 3 '20
36	Functional Testing	1.2 mon						Nov
37	Accentance Testing	3 mons				<u>_</u>		
	Acceptance resting	5 11013						
	Task	Projec	t Summan			\diamond	Manual Summan	Rollun
				у т		~		
Date:	Tue 9/6/16	Exteri	nal Tasks		Inactive Summary	\bigvee	Manual Summary	
	Milestone •	Extern	nal Milesto	ne 🔶	Manual Task	Ē.	Start-only	Ľ
	Summary	– Inacti	ve Task		Duration-only		Finish-only	C
	,				Page 1			

21	2022		202	3
1 Otr 2 Otr 3 Otr 4	Otr 1 Otr 2	Otr 3 Otr 4	Otr	1 Otr 2 Otr 3
			QU	
		Oct	17 '2	2
			1, 1	-
		i Nα	ov 14	'22
		×		Mar 6 '23
				Mar 6 '23
•				Mar 6 '23
				Mar 6 '23
		`		Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
				Mar 6 '23
26 '20				Mar 6 '23
26 '20				Mar 6 '23
26 '20 Feb 18 '21				Mar 6 '23
26 '20 Feb 18 '21				Mar 6 '23
26 '20 Feb 18 '21				Mar 6 '23
26 '20 Feb 18 '21 Deadline				Mar 6 '23
26 '20 Feb 18 '21 Deadline				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23
26 '20 Feb 18 '21 Deadline Progress				Mar 6 '23

CAPITAL REGIONAL DISTRICT - CORE AREA WASTEWATER TREATMENT PROGRAM

OPTION 18a - Rock Bay / McLoughlin Tertiary. Biosolids at Hartland

		-									
ID	Task Name	Duration		2017	2018	2	2019	2020	2021	2022	2023
			Qtr 2 Qtr	3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Q	Qtr 3 Qtr 4 C	Qtr 1 Qtr 2 Qtr 3 Qtr	4 Qtr 1 Qtr 2 Qtr 3	Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qt	r 4 Qtr 1 Qtr 2 Qtr 3 Qtr	4 Qtr 1 Qtr 2 Qtr 3
38	Conveyance (Scope TBD)	48 mon	5								
39	Arbutus Road Attenuation Tank (DBB)	19 mon:	5				Jul 1 '19				
40	Clover Forcemain to Rock Bay	31 mons	5					Jun 1 '20)		
41	Rock Bay to Clover Forcemain	31 mon:	5					Jun 1 '2()		
42	Clover Pump Station	28 mon	5					Apr 6 '20			
43	ECI/Trent Twining (DBB)	30 mon	5					Jul 2	7 '20		
44	Currie Forcemain	34 mon	5						Mar 8 '21		
45	Currie Pump Station	25 mons	5						Nov 16 '20		
46	Macaulay Pump Station	41 mons	5		*				Mar 8 '21		
47	Clover Outfall Twin (TBD)	24 mons	5						Se	p 20 '21	

DeadlineProgress

₽

-

Appendix D

Cost Estimates

(Commercial Confidential – Under Separate Cover)